Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594
RuEn
Advanced
Search
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home Archive of journals Volume 12, No. 2, 2022 Dangerous gas-saturated objects in the World Ocean: the East Siberian Sea

DANGEROUS GAS-SATURATED OBJECTS IN THE WORLD OCEAN: THE EAST SIBERIAN SEA

JOURNAL: Volume 12, No. 2, 2022, p. 158-171

HEADING: Research activities in the Arctic

AUTHORS: Bogoyavlensky, V.I., Kishankov, A.V., Kazanin, A.G., Kazanin, G.A.

ORGANIZATIONS: Oil and Gas Research Institute of RAS, JSC Marine Arctic Geological Expedition

DOI: 10.25283/2223-4594-2022-2-158-171

UDC: 553.981

The article was received on: 10.03.2022

Keywords: gas hydrates, CDP seismic, near-surface section, gas deposits, gas pockets, East Siberian Sea, seismic section, ice gouging, plough marks

Bibliographic description: Bogoyavlensky, V.I., Kishankov, A.V., Kazanin, A.G., Kazanin, G.A. Dangerous gas-saturated objects in the World Ocean: the East Siberian Sea. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2022, vol. 12, no. 2, pp. 158-171. DOI: 10.25283/2223-4594-2022-2-158-171. (In Russian).


Abstract:

For the first time, the researchers performed the interpretation of the upper part of the common depth point (CDP) seismic sections in the northwestern part of the East Siberian Sea (ESS) along the 44 lines of JSC MAGE in the amount of 8200 km. They revealed 129 anomalous objects in near-bottom sediments, potentially associated with gas accumulations and channels of its subvertical migration. The average distance between these objects along the lines was 63.6 km — 5.2—6.2 times less than in the Chukchi, Laptev and Bering seas. The authors substantiate that the ESS is characterized by a significantly smaller number of gas migration channels — active faults reaching the near-bottom sediments, compared to the seas mentioned above. This is consistent with the lower neotectonic activity of the ESS and the absence of significant seismic events. In the study area, the researchers revealed a large number of depressions in the bottom relief, which are associated with the furrows of ice gouging during the transgressions-regressions of the sea and at the present stage. Significant errors in the GEBCO bathymetry database were also revealed.


Finance info: The research was carried out according to the state assignment of the Oil and Gas Research Institute, Russian Academy of Sciences on the topic Improving the efficiency and environmental safety of the oil and gas resources development in the Arctic and Subarctic zones of the Earth in a changing climate (No. 122022800264-9).

References:

1. Anisimov O. A., Zaboikina Yu. G., Kokorev V. A., Yurganov L. N. Possible causes of methane release from the East Arctic seas shelf. Ld i Sneg, 2015, no. 54 (2), . 69—81. (In Russian).

2. Baranov B., Galkin S., Vedenin A., Dozorova K., Gebruk A., Flint M. Methane seeps on the outer shelf of the Laptev Sea: characteristic features, structural control, and benthic fauna. Geo-Marine Letters, 2020, vol. 40, p. 541—557.

3. Bogoyavlensky V. I., Kazanin G. S., Kishankov A. V. Dangerous gas-saturated objects in the World Ocean: the Laptev Sea. Burenie i neft’, 2018, no. 5, . 20—28. (In Russian).

4. Bogoyavlensky V. I., Kishankov A. V. Dangerous gas-saturated objects in the World Ocean: the Bering Sea. Burenie i neft’, 2018, no. 9, . 4—12. (In Russian).

5. Bogoyavlensky V. I., Kishankov A. V. Dangerous gas-saturated objects in the World Ocean: the Chukchi Sea (Russia and the USA). Arktika: ekologiya i economika. [Arctic: Ecology and Economy], 2020, no. 2 (38), . 45—58. (In Russian).

6. Bogoyavlensky V. I., Kazanin A. G., Kishankov A. V., Kazanin G. A. Earth degassing in the Arctic: comprehensive analysis of factors of powerful gas emission in the Laptev Sea. Arktika: ekologiya i economika. [Arctic: Ecology and Economy], 2021, vol. 11, no. 2, pp. 178—194. (In Russian).

7. Bogoyavlensky V. I., Kishakov A. V., Kazanin A. G. Permafrost, Gas Hydrates, and Gas Seeps in the Central Part of the Laptev Sea. Doklady Earth Sciences, 2021, vol. 500, no. 1, pp. 766—771.

8. Bogoyavlensky V., Kishankov A., Kazanin A. Central Laptev Zone of Gas Seeps: Comprehensive Analysis of Seismic Data. EAGE, Conference Proceedings, Geomodel 2021, Sept. 2021, vol. 2021, pp. 1—6. Available at: https://doi.org/10.3997/2214-4609.202157116.

9. Bogoyavlensky V., Kishankov A., Kazanin A., Kazanin G. Distribution of permafrost and gas hydrates in relation to intensive gas emission in the central part of the Laptev Sea (Russian Arctic). Marine and Petroleum Geology, 2022, vol. 138, p. 105527.

10. Sergienko V. I., Lobkovsky L. I., Semiletov I. P. et al. The degradation of submarine permafrost and the destruction of hydrates on the shelf of east arctic seas as a potential cause of the “Methane Catastrophe”: some results of integrated studies in 2011. Doklady Earth Sciences, 2012, vol. 446 (1), pp. 1132—1137.

11. Shakhova N., Semiletov I., Salyuk A., Yusupov V., Kosmach D., Gustafsson O. Extensive methane venting to the atmosphere from sediments of the east Siberian Arctic shelf. Science, 2010, no. 327, pp. 1246—1250.

12. Shakhova N. E., Sergienko V. I., Semiletov I. P. Contribution of the east siberian shelf to modern methane cycle. Vestn. Ros. akad. nauk, 2009, vol. 79, no. 6, pp. 507—518. (In Russian).

13. Shakirov R. B. Gasgeochemical fields of the Eastern Asia marginal seas. — Moscow, GEOS Publ., 2018, 341 p. (In Russian).

14. Steinbach J., Holmstrand H., Shcherbakova K., Kosmach D., Brüchert V., Shakhova N. et al. Source apportionment of methane escaping the subsea permafrost system in the outer Eurasian Arctic Shelf. Proc. Natl. Acad. Sci. Unit. States Am., 2021, vol. 118 (10).

15. Yusupov V. I., Salyuk A. N., Karnaukh V. N., Semiletov I. P., Shakhova N. E. Detection of methane ebullition in shelf waters of the Laptev Sea in the Eastern Arctic Region. Doklady Earth Sciences, 2010, vol. 430, no. 2, . 261—264.

16. Bogoyavlensky V. I., Kerimov V. Yu., Olkhovskaya O. O. Dangerous gas-saturated objects in the world ocean: the Sea of Okhotsk. Neftyanoye khoz-vo, 2016, no. 6, pp. 43—47. (In Russian).

17. Bogoyavlensky V., Kishankov A., Yanchevskaya A., Bogoyavlensky I. Forecast of Gas Hydrates Distribution Zones in the Arctic Ocean and Adjacent Offshore Areas. Geosciences, 2018, vol. 8, p. 453.

18. Bogoyavlensky V. I., Kishankov A. V., Yanchevskaya A. S., Bogoyavlensky I. V. Gas Hydrates Potential of the Arctic and Caspian Offshore Areas. EAGE, Third International Conference on Geology of the Caspian Sea and Adjacent Areas (Baku, 2019), 2019, p. 1—5. DOI: 10.3997/2214-4609.201952029.

19. Bogoyavlensky V., Yanchevskaya A., Kishankov A. Forecast of the distribution and thickness of gas hydrate stability zone at the bottom of the Caspian Sea. Energies 2021, 2021, vol. 14, 6019.

20. Bogoyavlensky V., Yanchevskaya A., Kishankov A. Forecast of The Distribution and Thickness of Gas Hydrate Stability Zone at The Bottom of The Caspian Sea. Conference Proceedings, Geomodel., Sep. 2021, vol. 2021, pp. 1—6.

21. Bogoyavlensky V., Bogoyavlensky I., Nikonov R., Sizov O., Kishankov A., Kargina T. Seyakha catastrophic gas blowout and explosion from the cryosphere of the Arctic Yamal Peninsula. Cold Regions Science and Technology, 2022, vol. 196, 103507. https://doi.org/10.1016/j.coldregions.2022.103507.

22. Bogoyavlensky V. I. Arctic and the World Ocean: Current State, Perspectives and Challenges of Hydrocarbon Production. Trudy VEO Russia, 2014, vol. 182, no. 3, pp. 12—175. (In Russian).

23. Bogoyavlensky V. I. Natural and technogenic threats in fossil fuels production in the Earth cryolithosphere. Gornaya promyshlennost’, 2020, pp.  97—118. DOI: 10.30686/1609-9192-2020-1-97-118. (In Russian).

24. Bogoyavlensky V. I. Fundamental aspects of the catastrophic gas blowout genesis and the formation of giant craters in the Arctic. Arktika: ekologiya i economika. [Arctic: Ecology and Economy], 2021, vol. 11, no. 1, pp. 51—66. DOI: 10.25283/2223-4594-2021-1-51-66. (In Russian).

25. Bogoyavlensky V. I., Bogoyavlensky I. V., Kargina T. N. Catastrophic gas blowout in 2020 on the Yamal Peninsula in the Arctic. Results of comprehensive analysis of aerospace RS data. Arktika: ekologiya i economika. [Arctic: Ecology and Economy], 2021, vol. 11, no. 3, pp. 363—374. DOI: 10.25283/2223-4594-2021-3-362-374. (In Russian).

26. Bogoyavlensky V., Bogoyavlensky I., Nikonov R., Yakushev V., Sevastyanov V. Permanent gas emission from the Seyakha Crater of gas blowout, Yamal Peninsula, Russian Arctic. Energies 2021, vol. 14, 5345, 22 p. Available at: https://doi.org/10.3390/en14175345.

27. Bogoyavlensky V., Bogoyavlensky I., Nikonov R., Kargina T., Chuvilin E., Bukhanov B., Umnikov A. New Catastrophic Gas Blowout and Giant Crater on the Yamal Peninsula in 2020: Results of the Expedition and Data Processing. Geosciences 2021, vol. 11, 71, 20 p. Available at: https://doi.org/10.3390/geosciences11020071.

28. Andreassen K., Hubbard A., Winsborrow M., Patton H. et al. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor. Science, 2017, vol. 356, no. 6341, pp. 948—953.

29. Atlas of the Arctic. A. F. Treshnikov (ed.). Head department of geodesy and cartography of the Ministerial Council of USSR. Moscow, 1985. 203 p. (In Russian).

30. National atlas of the Arctic. Ed. N. S. Kasimov. Moscow, JSC Roskartografiya, 2017, 496 p. (In Russian).

31. Bogoyavlensky V. I. Search, exploration and production of hydrocarbon deposits in the Circumarctic region. Arktika: ekologiya i economika. [Arctic: Ecology and Economy], 2013, no. 2 (10), pp. 62—71. (In Russian).

32. Mel’nikov P. N., Skvortsov M. B., Kravchenko M. N., Agadzhanyants I. G., Grushevskaya O. V., Uvarova I. V. Results of exploration work on the Russian Arctic shelf in 2014—2019 and prospects for work in the near future. Geologiya nefti i gaza, 2019, no. 6, . 5—18. (In Russian).

33. Senin B. V., Leonchik M. I. Strategic directions for the development of the oil and gas industry of the unallocated fund of marine areas. Miner. resursy Rossii. Ekonomika i upravleniye, 2016, no. 6, pp. 3—14. (In Russian).

34. Roeser H. A., Block M., Hinz K., Reichert C. Marine geophysical investigation in the Laptev Sea and Western Part of the East Siberian Sea. Berichte zur Polarforschung, 1995, pp. 367—377.

35. Kosko M. K., Sobolev N. N., Korago E. A. et al. Geology of the New Siberian Islands as the Basis for Interpreting Geophysical Data on the East Arctic Shelf of Russia. Neftegaz. geologiya. Teoriya i praktika, 2013, vol. 8, no. 2, . 1—36. (In Russian).

36. Backman J., Jakobsson M., Frank M. et al. Age model and core seismic integration for the Cenozoic Arctic Coring Expedition sediments from the Lomonosov Ridge. Paleoceanography, 2008, vol. 23, no. 1.

37. Drachev S. S., Malyshev N. A., Nikishin A. M. Tectonic history and petroleum geology of the Russian Arctic Shelves: an overview. Geological society, London. Petroleum geology conference series, 2010, vol. 7, no. 1, pp. 591—619.

38. Drachev S. S., Elistratov A. V., Savostin L. A. Structure and seismostratigraphy of the East Siberian Sea shelf along the Indigirka Bay-Jannetta Island seismic profile. Doklady Earth Sciences, 2001, vol. 337, no. 3, . 293—297.

39. Nikishin A. M., Startseva K. F., Verzhbitsky V. E. et al. Sedimentary basins of the East Siberian Sea and the Chukchi sea region and the adjacent area of Amerasia basin: seismic stratigraphy and stages of geological history. Geotektonika, 2019, no. 6, . 3—26. (In Russian).

40. Fujita K., Cook D. B. The Arctic continental margin of eastern Siberia. The Arctic Ocean region, The Geology of North America, 1990, vol. 50, p. 289—304.

41. Kazanin G. S., Barabanova Y. B., Kirillova-Pokrovskaya T. A. et al. Continental margin of the East Siberian Sea: geological structure and perspectives of oil and gas bearing. Razvedka i okhrana nedr, 2017, vol. 10, . 51—55. (In Russian).

42. Kazanin G. S., Kazanin A. G., Bazilevich S. O. Main results of geophysical studies of the Arctic offshore areas at JSC “MAGE”, development and implementation problems of domestic geophysical equipment for marine seismic survey. Arktika: ekologiya i economika. [Arctic: Ecology and Economy], 2020, no. 3 (39), . 99—111. DOI: 10.25283/2223-4594-2020-3-99-111. (In Russian).

43. Kvenvolden K. A., Ginsburg G. D., Soloviev V. A. Worldwide distribution of subaquatic gas hydrates. Geo-Marine Letters, 1993, vol. 13 (1), pp. 32—40.

44. Collett T. S., Dallimore S. R. Permafrost-Associated Gas Hydrate. Natural Gas Hydrate. Coastal Systems and Continental Margins, 2000, vol. 5, pp. 43—60.

45. Ogorodov S. A., Baranskaya A. V., Belova N. G. et al. Atlas of coastal erosion and ice-gouging hazards of the Russian Arctic coastal-shelf zone. Moscow, Lomonosov Moscow State Univ., 2020, 69 p.

46. GOST R 58112-2018. Petroleum and natural gas industries. Arctic operations. Ice management. Collection of hydrometeorological data. Moscow, Standartinform, 2018, 20 p. (In Russian).

47. Mironyuk S. G. Taking into account paleogeographic conditions for engineering surveys on the shelf of Russian Arctic west sector. Inzhener. izyskaniya, 2015, no. 7, . 28—38. (In Russian).

48. Libina N. V., Nikiforov S. L. Ice gouging effects on the eastern Arctic shelf of Russia. Vestn. of MSTU, 2018, vol. 21, no. 1, . 139—149. DOI: 10.21443/1560-9278-2018-21-1-139-149. (In Russian).

49. Platonova E. V., Bychkova I. A. Long-term observation of grounded hummocks in the eastern siberian sea on satellite data. Uchenyye zap. RGGMU, 2018, no. 53, . 103—112. (In Russian).

50. Buzin I. V., Mironov E. Yu., Sukhikh N. A., Pavlov V. A., Kornishin K. A., Efimov Ya. O. Investigation of drift of the ice features on the Russian Arctic offshore with the help of automatic radio beacons based on the ARGOS satellite system. Nauchno-tekhnicheskiy vestnik OAO “NK “Rosneft’”, 2016, no. 4, . 4—9. (In Russian).

51. Belderson R. H., Kenyon N. H., Wilson J. B. Iceberg plough marks in the northeast Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 1973, vol. 13, iss. 3, pp. 215—224.

52. Jakobsson M., Polyak L., Edwards M. et al. Glacial geomorphology of the Central Arctic Ocean: the Chukchi Borderland and the Lomonosov Ridge. Earth Surface Processes and Landforms, 2008, vol. 33, pp. 526—545. DOI: 10.1002/esp.1667.

53. Paull C. K., Dallimore S. R., Jin Y. K., Caress D. W., Lundsten E., Gwiazda R., Anderson K., Clarke J. H., Youngblut S., Melling H. Rapid seafloor changes associated with the degradation of Arctic submarine permafrost. PNAS, 2022, vol. 119, no. 12, e2119105119, 8 p. https://doi.org/10.1073/pnas.2119105119.

54. Grantz A., May S. D., Hart P. E. Geology of the Arctic continental margin of Alaska. The Geology of Alaska. Geological Society of America. The Geology of North America, 1994, vol. G-1, pp. 17—48.

55. Kienle J., Roederer J. G., Shaw G. E. Volcanic event in Soviet Arctic. EOS, 1983, vol. 64, no. 20, p. 377.

56. Bondur V. G., Kuznetsova T. V. Detecting Gas Seeps in Arctic Sea Water Areas Using Remote Sensing Data. Izvestiya, Atmospheric and Oceanic Physics, 2015, vol. 51, no. 9, . 1060—1072. DOI: 10.1134/S0001433815090066.

57. Bogoyavlensky V. I., Sizov O. S., Bogoyavlensky I. V., Nikonov R. A. Remote identification of areas of surface gas and gas emissions in the Arctic: Yamal Peninsula. Arktika: ekologiya i economika. [Arctic: Ecology and Economy], 2016, no. 3 (23), . 4—15. (In Russian).

58. Masurenkov Y. P., Slezin Y. B., Sobisevich A. P. Gas plumes near the Bennett Island. Izv. RAN. Ser. Geogr., 2013, no. 3, . 86—95. (In Russian).

59. LaMacchia D. LBL physicist solves Cold War mystery. July 24, 1992. Available at: https:// www2.lbl.gov/Science-Articles/Archive/arctic-plume.explored.html.

60. Dethleff D. Polynyas as a possible source for enigmatic Bennett Island atmospheric plumes. The Polar Oceans and Their Role in Shaping the Global Environment. Geophys. Monogr. Ser. 1994, vol. 85, p. 475—483 (AGU, Washington).


Download »


© 2011-2022 Arctic: ecology and economy
DOI 10.25283/2223-4594