Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » Volume 11, No. 4, 2021 » Modeling in marine ice engineering

MODELING IN MARINE ICE ENGINEERING

JOURNAL: Volume 11, No. 4, 2021, p. 557-567

HEADING: Shipbuilding for the Arctic

AUTHORS: Dobrodeev, A.A., Sazonov, K.E.

ORGANIZATIONS: Krylov State Research Centre

DOI: 10.25283/2223-4594-2021-4-557-567

UDC: 626.01; 627.22

The article was received on: 16.07.2021

Keywords: mathematical modeling, physical modeling, ice model tank, ice properties

Bibliographic description: Dobrodeev, A.A., Sazonov, K.E. Modeling in marine ice engineering. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2021, vol. 11, no. 4, pp. 557-567. DOI: 10.25283/2223-4594-2021-4-557-567. (In Russian).


Abstract:

In the modern world, it is already difficult to imagine the creation of a significant engineering structure without modeling its external and internal appearance, the operation modeling of the main mechanisms, operating conditions and many other design features and emerging phenomena at the design stage. The paper interprets modeling and simulation as one of the computational methods that allow us to obtain quantitative results when studying ice impact on marine structures, for e.g. icebreakers and transport vessels, platform substructures, hydro-technical installations. In connection with the above, from the existing classification of modeling methods, the authors consider the physical and mathematical ones in the work. They present comparative advantages of both methods in their application in the problems of marine ice engineering, as well as the prospects for their development for solving a wide range of scientific problems aimed at the development of Arctic shipbuilding.


Finance info: This work was carried out as part of the project “Research of statistical properties relating to the ice loads on engineering structures and the development of a new method of their probabilistic modeling” No. 0784-2020-0021 with the support of the Ministry of Science and Higher Education of the Russian Federation.

References:
  1. Sedov L. I. Methods of similarity and measurement in mechanics. Moskow, Nauka, 1977, 440 p. (In Russian).
  2. Barenblatt G. I. Self-similar phenomena-dimensional analysis and scaling. Dolgoprudnyi, Publ. “Intellekt”, 2009, 215 p. (In Russian).
  3. Sedov L. I. About the main models in mechanics. Moskow, Moscow Univ. Press, 1992, 151 p. (In Russian).
  4. Neujmin Ya. G. Models in science and technology: history, theory, practice. Leningrad, Nauka, 1984, 189 p. (In Russian).
  5. Sazonov K. E. The role of V. Froud in the creation of the theory of the ship. Sudostroenie, 2010, nî. 5, pp. 61—66. (In Russian).
  6. Gotman A. Sh. On the 200th anniversary of the birth of William Froude. Fundamental and applied hydrophysics, 2011, vol. 4, nî. 1, pp. 88—96. (In Russian).
  7. Sazonov K. E. “Tsar-Icebreaker” by academician A. N. Krylov. Problemy Arktiki i Antarktiki, 2021, vol. 67, nî. 2, pp. 208—221. (In Russian).
  8. Borusevich V. O., Rusetskii A. A., Sazonov K. E., Solov’ev I. A. The modern hydrodynamic laboratories. St. Petersburg, Krylov State Research Centre, 2019, 316 p. (In Russian).
  9. ITTC — Recommended Procedures and Guidelines. General Guidance and Introduction to Ice Model Testing. 7.5-02-04-01. 2017. Available at: https://www.ittc.info/media/8051/75-02-04-01.pdf.
  10. Sodhi D. S., Griggs D. B., Tucker W. B. Ice performance tests of USCGC Healy, Proc. 16th Int. Conf. POAC’01, Ottawa, Canada, 2001, vol. 2, pp. 893—908.
  11. Kanevskij G. I., Klubnichkin A. M., Sazonov K. E. Forecasting the characteristics of the seaworthiness of multi-tow vessels. St. Petersburg, Krylov State Research Centre, 2019, 160 p.
  12. Kanevskii G. I., Klubnichkin A. M., Sazonov K. E. The calculation of the propulsion in ice field using alternative system of the propeller-hull interaction coefficients. Proceedings of the ASME 2018 37d International Conference on Ocean, Offshore and Arctic Engineering, OMAE, Madrid, Spain. [S. l.], 2018. Paper 77210.
  13. Vershinin S. A., Truskov P. A., Kuzmichev K. V. The impact of ice on the structures of the Sakhalin shelf. Moskow, Institute Giprostroymost, 2005, 208 p. (In Russian).
  14. Dobrodeev A. A., Sazonov K. E. Physical modeling of ice load on extended hydraulic constructions. The vertical wall constructions. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2020, no. 4 (40), pp. 77—89. DOI: 10.25283/2223-4594-2020-4-77-89. (In Russian).
  15. Dobrodeev A. A., Sazonov K. E. Physical modeling of ice load on extended hydraulic constructions. Slope constructions with an inclined surface. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2021, vol. 11. no. 1, pp. 90—100. DOI: 10.25283/2223-4594-2021-1-90-100. (In Russian).
  16. Sazonov K. E. Theoretical foundations of ship navigation in ice. St. Petersburg, Krylov State Research Centre, 2010, 274 p. (In Russian).
  17. Valanto P. Numerical prediction of ice loads and resistance of ships advancing in level ice. Proceedings of 6th International Conference on Ships and Marine Structures in Cold Regions, ICETECH’2000, St. Petersburg. [S. l.], 2000, pp. 215—230.
  18. Ralston T. Analysis of ice loads on conical structures in the framework of the theory of limit equilibrium. Collection of Physics and mechanics of ice. Ed. by P. Trudet. Moskow, Mir, 1983, pp. 282—297. (In Russian).
  19. Croasdale K., Cammaert A., Metge M. A Method for the Calculation of Sheet Ice Loads on Sloping Structures. Proceedings of IAHR Ice Symposium, Trondheim, Norway, 1994, pp. 874—881.
  20. Tan X., Su B., Riska K., Moan T. A six-degrees-of-freedom numerical model for level ice-ship interaction. Cold Reg. Sci. Technol, 2013, iss. 92, pp. 1—16.
  21. Biryukov V. A., Miryaha V. A., Petrov I. B. Analysis of the dependence of the global load on the mechanical parameters of ice during the interaction of the ice field with the structure. Dokl. Akad. nauk, 2017, vol. 474, no. 6, pp. 696—699. (In Russian).
  22. Petrov I. B. Problems of modeling natural and anthropogenic processes in the Arctic zone of the Russian Federation. Mat. modelirovaniye, 2018, vol. 30, no. 7, pp. 103—136. (In Russian).
  23. Grinevich D. V., Buznik V. M., Nuzhnyj G. A. Review of the application of numerical methods for modeling the deformation and destruction of ice. Trudy VIAM, 2020, no. 8 (90), pp.109—122. (In Russian).
  24. Von Bock und Polach R., Ehlers S. Model scale ice. Pt. B: Numerical model. Cold Regions Science and Technology, 2013, 94, pp. 53—60.
  25. Lyan L., Shkhinek K. N. The impact of ice on slope structures. Inzh.-stroitel. zhurn., 2014, no. 1, pp. 71—79. (In Russian).
  26. Hopkins M. A. Four stages of pressure ridging. J. Geophys. Res., 1998, 103 (C10), pp. 21883—21891.
  27. Hansen E., Loset S. Modeling floating offshore units moored in broken ice: model description. Cold Regions Science and Technology, 1999, 29, ðð. 97—106.
  28. Rantaa J., Polojärvia A. Limit mechanisms for ice loads on inclined structures: Local crushing. Marine Structures, 2019, 67, p. 102633.
  29. Long X., Liu L., Liu S., Ji S. Discrete Element Analysis of High-Pressure Zones of Sea Ice on Vertical Structures. J. Mar. Sci. Eng., 2021, 9, 348 p.
  30. Shkhinek K. N., Balagura S. V., Bol’shev A. S., Frolov S. A. Mathematical modeling of the impact of flat ice and hummocks with anchored floating structures of the FPU type and platforms of the SPAR type. Nauch.-tekhn. sb. RMRS, 2009, no. 32, pp. 93—108. (In Russian).
  31. Løset S., Shkhinek K. N., Gudmestad O. T., Høyland K. V. Actions from ice on Arctic Offshore and Coastal Structures. Trondheim; St. Petersburg; Moscow; Krasnodar: Publ. “LAN”, 2006, 271 p.
  32. Zhou L., Diao F., Song M., Han Y., Ding S. Calculation Methods of Icebreaking Capability for a Double-Acting Polar Ship. J. Mar. Sci. Eng., 2020, 8, 179 p.
  33. Dobrodeev A. A., Klement’eva N. Yu., Sazonov K. E. Asymmetric movement of large-tonnage vessels in the “narrow” channel. Problemy Arktiki i Antarktiki, 2018, vol. 64, no. 2, pp. 200—207. (In Russian).
  34. Dobrodeev A. À., Klementyeva N. Y., Sazonov K. E. Large ship motion mechanics in “narrow” ice channel. IOP Conf. Ser.: Earth Environ. Sci, 2018, p. 193 012017.
  35. Bogorodskij V. V., Gavrilo V. P. Led. Physical properties. Modern methods in glaciology. Leningrad, Gidrometeoizdat, 1980, 384 p. (In Russian).
  36. Timco G. W., Weeks W. F. A review of the engineering properties of sea ice. Cold Regions Science and Technology, 2010, 60 (2), pp. 107—129.
  37. Epifanov V. P., Sazonov K. E. The effect of standing waves on the local strength of the ice field. Dokl. Akad. nauk, 2019, vol. 489, no. 6, pp. 30—35. (In Russian).
  38. Ice formations of the seas of the Western Arctic. Ed. by G. K. Zubakin. St. Petersburg, Arctic and Antarctic Research Institute, 2006, 272 p. (In Russian).

Download »


© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594