| ||||
| ||||
Home » Archive of journals » Volume 11, No. 3, 2021 » Long-term hydrochemical changes and “Harmful Algal Blooms” in the Arctic Lake Imandra LONG-TERM HYDROCHEMICAL CHANGES AND “HARMFUL ALGAL BLOOMS” IN THE ARCTIC LAKE IMANDRAJOURNAL: Volume 11, No. 3, 2021, p. 327-340HEADING: Ecology AUTHORS: Kashulin, N.A., Bekkelund, A.., Dauvalter, V.A. ORGANIZATIONS: Institute of North Industrial Ecology Problems of the Kola Science Centre of the RAS, Creek-Bio AB DOI: 10.25283/2223-4594-2021-3-327-340 UDC: 504.052+504.4.054 The article was received on: 25.03.2021 Keywords: water quality, heavy metals, nutrients dynamics, Arctic lake, Imandra, harmful algae bloom (HAB) Bibliographic description: Kashulin, N.A., Bekkelund, A.., Dauvalter, V.A. Long-term hydrochemical changes and “Harmful Algal Blooms” in the Arctic Lake Imandra. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2021, vol. 11, no. 3, pp. 327-340. DOI: 10.25283/2223-4594-2021-3-327-340. (In Russian). Abstract: The large arctic Imandra Lake is located in the industrial Murmansk region, Russia. Since the 2000s it has regular Harmful Algal Blooms. Significant changes in hydrochemical indices were recorded in 1985—2017. The ratio of the main ions has changed, the pH and alkalinity have increased. The indicators of water salinity, the total content of P and N, and their mineral forms have decreased. The concentrations of Zn, Cu, Ni è SO42– have decreased as well. The decrease trends in the content of macronutrients in waters contradict traditional concepts and the role of mineral P and N in the development of HAB. This indicates more complex mechanisms of flowering in this arctic reservoir, which are being discussed. Finance info: The work was carried out according to the state assignment on the research work theme No. 0226-2019-0045 with the support of the Russian Foundation for Basic Research in the framework of the project 18-05-60125 “Large lakes of the Arctic in the context of global and regional changes in the environment and climate”. References: 1. Schindler D. W., Smol J. P. Cumulative effects of climate warming and other human activities on freshwaters of Arctic and subarctic North America. AMBIO: a J. of the Human Environment, 2006, vol. 35, no. 4, pp. 160—168. Available at: https://doi.org/10.1579/0044-7447(2006)35[160:CEOCWA]2.0.CO;2. 2. O’Reilly C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett., 2015, 42, 10, ðð. 773—781. DOI: 10.1002/2015GL066235. 3. Kashulin N. A., Skufina T. P., Dauvalter V. A., Kotelnikov V. A. Sustainable water use in the Arctic. New approaches and solutions. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2018, no. 4, ðð. 15—29. DOI: 10.25283/2223-4594-2018-4-15-29. (In Russian). 4. Kashulin N. A. et al. Selected aspects of the current state of freshwater resources in the Murmansk Region, Russia. J. of Environmental Science and Health, Pt. A, 2017, vol. 52, no. 9, ðð. 921—929. Available at: https://doi.org/10.1080/10934529.2017.1318633. 5. Moiseyenko T. I., Dauval’ter V. A., Lukin A. A. et al. Anthropogenic modifications of the ecosystem of Lake Imandra. Moscow, Nauka, 2002 ð. (In Russian). 6. Moiseenko T. I. Evolution of Ecosystems under an Anthropogenic Load: From Disorganization to Self-Organization. Geochemistry Intern., 2020, vol. 58, no. 10, ðð. 1083—1091. Available at: https://doi.org/10.1134/S0016702920100110. (In Russian). 7. Denisov D. B., Kashulin N. A. Cyanoprokaryotes in the plankton of Lake Imandra (Kola Peninsula). Trudy KNC RAN, 2016, no. 7—4 (41), ðð. 40—57. (In Russian). 8. Kashulin N. A., Bekkelund A. K., Dauvalter V. A. HAB’s in arctic lakes — new challenges. Monitoring sostoyaniya i zagryazneniya okruzhayushchey sredy. Ekosistemy i klimat Arkticheskoy zony. Moscow, 2020, ðð. 303—306. (In Russian). 9. Terent’yev P. M., Kashulin N. A. Transformation of the fish part of the communities of the reservoirs of the Murmansk region. Trudy KNC RAN, 2012, no. 3 (10), ðð. 205—245. (In Russian). 10. Zubova E. M., Kashulin N. A., Terentyev P. M. Modern biological characteristics of whitefish Coregonus lavaretus, european vendace C. albula and european smelt Osmerus eperlanus from the Imandra lake. Vestn. Perm. un-ta. Ser. Biologiya, 2020, iss. 3, pp. 210—226. DOI: 10.17072/1994-9952-2020-3-210-226. (In Russian). 11. Facey J. A., Apte S. S., Mitrovic S. M. A Review of the Effect of Trace Metals on Freshwater Cyanobacterial Growth and Toxin Production. Toxins, 2019, 11, p. 643. Available at: https://doi.org/10.3390/toxins11110643. 12. Bowling L. Occurrence and possible causes of a severe cyanobacterial bloom in Lake Cargelligo, New South Wales. Mar. Freshw. Res., 1994, 45, pp. 737—745. Available at: https://doi.org/10.1071/MF9940737. 13. Molot L. A. et al. A novel model for cyanobacteria bloom formation: The critical role of anoxia and ferrous iron. Freshw. Biol., 2014, 59, pp. 1323—1340. Available at: https://doi.org/10.1111/fwb.12334. 14. Anderson D. M. et al. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries, 2002, 25, pp. 704—726. Available at: https://doi.org/10.1007/BF02804901. 15. Beaver J. R. et al. Environmental factors influencing the quantitative distribution of microcystin and common potentially toxigenic cyanobacteria in US lakes and reservoirs. Harmful Algae, 2018, 78, pp. 118—128. Available at: https://doi.org/10.1016/j.hal.2018.08.004. 16. Marshall G. J. et al. Climate change in the Kola Peninsula, Arctic Russia, during the last 50 years from meteorological observations. J. of Climate, 2016, 29 (18), pp. 6823—6840. Available at: https://doi.org/10.1175/JCLI-D-16-0179.1. 17. Denisov D. B., Kashulin N. A. Current state of algal communities of plankton in the zone of influence of the Kola NPP (Lake Imandra). Trudy KNC RAN, 2013, no. 3 (16), ðð. 70—96. (In Russian). 18. Kashulin N. A. et al. Characteristics of summertime spatial distribution of Phosphorus, Nitrogen and chlorophyll-a in a major eutrophic arctic lake Imandra (Murmansk region, Russia) as associated with harmful algal blooms. Biosfera, 2020, vol. 12, no. 3, ðð. 63—92. DOI: 10.24855/biosfera.v12i3.547. (In Russian). 19. Kashulin N. A., Bekkelund A., Dauval’ter V. A., Petrova O. V. Apatite mining and processing production and eutrophication of the arctic lake Imandra. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2019, no. 3 (35), ðð. 16—34. DOI: 10.25283/2223-4594-2019-3-16-34. (In Russian). 20. Schindler D. W. Evolution of phosphorus limitation in lakes. Science, 1977, 195 (4275), pp. 260—262. 21. Harpole W. S. et al. Nutrient co‐limitation of primary producer communities. Ecology letters, 2011, 14 (9), pp. 852—862. Available at: https://doi.org/10.1111/j.1461-0248.2011.01651.x. 22. Donald D. B. et al. Comparative effects of urea, ammonium, and nitrate on phytoplankton abundance, community composition, and toxicity in hypereutrophic freshwaters. Limnology and Oceanography, 2011, vol. 56, no. 6, ðð. 2161—2175. Available at: https://doi.org/10.4319/lo.2011.56.6.2161. 23. Finlay K. et al. Experimental evidence that pollution with urea can degrade water quality in phosphorus‐rich lakes of the Northern Great Plains. Limnology and Oceanography, 2010, vol. 55, no. 3, ðð. 1213—1230. Available at: https://doi.org/10.4319/lo.2010.55.3.1213. 24. Beversdorf L. J. et al. Long-term monitoring reveals carbon–nitrogen metabolism key to microcystin production in eutrophic lakes. Frontiers in microbiology, 2015, vol. 6, p. 456. Available at: https://doi.org/10.3389/fmicb.2015.00456. 25. Harris T. D. et al. Combined effects of nitrogen to phosphorus and nitrate to ammonia ratios on cyanobacterial metabolite concentrations in eutrophic Midwestern USA reservoirs. Inland Waters, 2016, vol. 6. no. 2, ðð. 199—210. DOI: 10.5268/IW-6.2.938. 26. Beversdorf L. J. et al. Variable cyanobacterial toxin and metabolite profiles across six eutrophic lakes of differing physiochemical characteristics. Toxins, 2017, vol. 9, no. 2, ð. 62. Available at: https://doi.org/10.3390/toxins9020062. 27. Glibert P. M., Legrand C. The diverse nutrient strategies of harmful algae: focus on osmotrophy. Ecology of harmful algae. Berlin; Heidelberg, Springer, 2006, pp. 163—175. DOI: 10.1007/978-3-540-32210-8_13. 28. Heisler J. et al. Eutrophication and harmful algal blooms: a scientific consensus. Harmful algae, 2008, vol. 8, no. 1, ðð. 3—13. Available at: https://doi.org/10.1016/j.hal.2008.08.006. 29. Matisoff G. et al. Internal loading of phosphorus in western Lake Erie. J. of Great Lakes Research, 2016, vol. 42, no. 4, ðð. 775—788. Available at: https://doi.org/10.1016/j.jglr.2016.04.004. 30. Orihel D. M. et al. The “nutrient pump”: Iron‐poor sediments fuel low nitrogen‐to‐phosphorus ratios and cyanobacterial blooms in polymictic lakes. Limnology and Oceanography, 2015, vol. 60, no. 3, ðð. 856—871. Available at: https://doi.org/10.1002/lno.10076. 31. Hellweger F. L. et al. Agent‐based modeling of the complex life cycle of a cyanobacterium (Anabaena) in a shallow reservoir. Limnology and Oceanography, 2008, vol. 53, no. 4, ðð. 1227—1241. Available at: https://doi.org/10.4319/lo.2008.53.4.1227. 32. Burkholder J. A. M., Glibert P. M., Skelton H. M. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful algae, 2008, vol. 8, no. 1, ðð. 77—93. Available at: https://doi.org/10.1016/j.hal.2008.08.010. 33. Flynn K. J., Mitra A., Glibert P. M., Burkholder J. A. M. Mixotrophy in harmful algal blooms: by whom, on whom, when, why, and what next. Global Ecology and Oceanography of Harmful Algal Blooms. [S. l.], Springer, Cham, 2018, ðð. 113—132. Available at: https://doi.org/10.1007/978-3-319-70069-4_7. 34. Glibert P. M., Burkholder J. A. M. Harmful algal blooms and eutrophication: “strategies” for nutrient uptake and growth outside the Redfield comfort zone. Chinese J. of Oceanology and Limnology, 2011, vol. 29, no. 4, ðð. 724—738. DOI: 10.1007/s00343-011-0502-z. 35. Nygaard K., Tobiesen A. Bacterivory in algae: a survival strategy during nutrient limitation. Limnology and Oceanography, 1993, vol. 38, no. 2, ðð. 273—279. Available at: https://doi.org/10.4319/lo.1993.38.2.0273. 36. Jeong H. J. et al. Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquatic microbial ecology, 2005, vol. 40, no. 2, ðð. 133—150. DOI: 10.3354/ame040133. 37. LaRoche J., Breitbarth E. Importance of the diazotrophs as a source of new nitrogen in the ocean. J. of Sea Research, 2005, vol. 53, iss. 1—2, pp. 67—91. Available at: https://doi.org/10.1016/j.seares.2004.05.005. 38. Glibert P. M., O’Neil J. M. Dissolved organic nitrogen release and amino acid oxidase activity by Trichodesmium spp. Bull. de l’Inst. Oceanographique Monaco numero special, 1999, ðð. 265—272. 39. Lenes J. M., Heil C. A. A historical analysis of the potential nutrient supply from the N2 fixing marine cyanobacterium Trichodesmium spp. to Karenia brevis blooms in the eastern Gulf of Mexico. J. of plankton research, 2010, vol. 32, no. 10, ðð. 1421—1431. Available at: https://doi.org/10.1093/plankt/fbq061. 40. Mulholland M. R. et al. Dinitrogen fixation and release of ammonium and dissolved organic nitrogen by Trichodesmium IMS101. Aquatic Microbial Ecology, 2004, vol. 37, no. 1, ðð. 85—94. DOI: 10.3354/ame037085. 41. Facey J. A. et al. A Review of the Effect of Trace Metals on Freshwater Cyanobacterial Growth and Toxin Production. Toxins, 2019, 11, p. 643. Available at: https://doi.org/10.3390/toxins11110643. 42. Sunda W. G. Trace metals and harmful algal blooms. Ecology of Harmful Algae. Berlin; Heidelberg, Springer, 2006, pp. 203—214. Available at: https://doi.org/10.1007/978-3-540-32210-8_16. 43. Perales-Vela H. V., Gonzáles-Moreno S., Montes-Horcasitas C., Cañizares-Villanueva R. O. Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae). Chemosphere, 2007, vol. 67, no. 11, ðð. 2274—2281. Available at: https://doi.org/10.1016/j.chemosphere.2006.11.036. 44. Lehman J. T. et al. Copper inhibition of phytoplankton in Saginaw Bay, Lake Huron. Can. J. Fish. Aquat. Sci., 2004, 61, pp. 1871—1880. Available at: https://doi.org/10.1139/f04-129. 45. Wu H. et al. Species-dependent variation in sensitivity of Microcystis species to copper sulfate: implication in algal toxicity of copper and controls of blooms. Scientific Reports, 2017, 7, no. 40393. Available at: https://doi.org/10.1038/srep40393. 46. Granéli E. Ecology of harmful algae. Ed. J. T. Turner. Berlin, Springer, 2006, p. 406. (Vol. 189). Available at: https://link.springer.com/content/pdf/10.1007/978-3-540-32210-8.pdf. Download » | ||||
© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594
|