| ||||
| ||||
Home » Archive of journals » Volume 11, No. 2, 2021 » Earth degassing in the Arctic: comprehensive analysis of factors of powerful gas emission in the Laptev Sea EARTH DEGASSING IN THE ARCTIC: COMPREHENSIVE ANALYSIS OF FACTORS OF POWERFUL GAS EMISSION IN THE LAPTEV SEAJOURNAL: Volume 11, No. 2, 2021, p. 178-194HEADING: Research activities in the Arctic AUTHORS: Bogoyavlensky, V.I., Kazanin, A.G., Kishankov, A.V., Kazanin, G.A. ORGANIZATIONS: Oil and Gas Research Institute of RAS, JSC Marine Arctic Geological Expedition DOI: 10.25283/2223-4594-2021-2-178-194 UDC: 553.981 The article was received on: 10.03.2021 Keywords: gas hydrates, Laptev sea, gas emission, CDP seismic, gas pockets, gas seeps, thermogenic gas, BSR horizon Bibliographic description: Bogoyavlensky, V.I., Kazanin, A.G., Kishankov, A.V., Kazanin, G.A. Earth degassing in the Arctic: comprehensive analysis of factors of powerful gas emission in the Laptev Sea. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2021, vol. 11, no. 2, pp. 178-194. DOI: 10.25283/2223-4594-2021-2-178-194. (In Russian). Abstract: Interpretation was conducted for 28 CDP seismic time sections with total length of 5930 km acquired by JSC “MAGE” in the Central Laptev Area, where a zone of powerful gas emission had been discovered earlier. 519 anomalous objects were revealed in near-bottom deposits with an average distance on seismic lines of 11,4 km, potentially connected with accumulations of gas and its migration paths. As a result of comprehensive analysis, for the first time, connection of gas seeps with deep-seated faults in the study area was justified. Highly likely forecast was made that in the area of the discovered seeps (seafloor depths from 50—60 m to 110 m), permafrost and gas hydrates are absent, and the seeps are caused by direct migration of gas from great depths. On the continental slope of the Laptev Sea, a bottom simulating reflector (BSR) was distinguished in CDP seismic sections, associated with the base of gas hydrates. Finance info: The research was conducted according to the state assignment to OGRI RAS on the topic “Sustainable environmental management and effective development of oil and gas resources of the Arctic and Sub-Arctic zones of the Earth” (No. ÀÀÀÀ-À19-119021590079-6). References: 1. Baranov B. V., Lobkovsky L. I., Dozorova K. A., Tsukanov N. V. The fault system controlling methane seeps on the shelf of the Laptev Sea. Dokl. Akad. nauk, 2019, vol. 486, no. 3, pp. 354—358. (In Russian). 2. Bogoyavlensky V. I. Emergency Situations in Developing Oil and Gas Resources in the Arctic and the Ocean. Arktika: ekologiya i economika. [Arctic: Ecology and Economy], 2014, no. 4, pp. 48—59. (In Russian). 3. Bogoyavlensky V. I. Natural and technogenic threats in fossil fuels production in the Earth cryolithosphere. Gor. prom-st’. [Russian Mining Industry], 2020, no. 1 (149), pp. 97—118. DOI: 10.30686/1609-9192-2020-1-97-118. (In Russian). 4. Bogoyavlensky V. I. Fundamental aspects of the catastrophic gas blowout genesis and the formation of giant craters in the Arctic. Arktika: ekologiya i economika. [Arctic: Ecology and Economy], 2021, vol. 11, no. 1, pp. 51—66. DOI: 10.25283/2223-4594-2021-1-51-66. (In Russian). 5. Bogoyavlensky V. I., Kerimov V. Yu., Olkhovskaya O. O. Dangerous gas-saturated objects in the World Ocean: the Sea of Okhotsk. Neftyanoye khoz-vo. [Oil Industry], 2016, no. 6, pp. 43—47. (In Russian). 6. Bogoyavlensky V. I., Kazanin G. S., Kishankov A. V. Dangerous gas-saturated objects in the World Ocean: the Laptev sea. Burenie i neft’. [Drilling and oil], 2018, no. 5, pp. 20—28. (In Russian). 7. Bogoyavlensky V. I., Kishankov A. V. Dangerous gas-saturated objects in the World Ocean: the Bering sea. Burenie i neft’. [Drilling and oil], 2018, no. 9, pp. 4—12. (In Russian). 8. Bogoyavlensky V. I., Kishankov A. V. Dangerous gas-saturated objects in the World Ocean: the Chukchi Sea (Russia and the USA). Arktika: ekologiya i economika. [Arctic: Ecology and Economy], 2020, no. 2 (38), pp. 45—58. DOI: 10.25283/2223-4594-2020-2-45-58. (In Russian). 9. Bogoyavlensky V. I., Sizov O. S., Nikonov R. A., Bogoyavlensky I. V., Kargina T. A. Earth degassing in the Arctic: the genesis of natural and anthropogenic methane emissions. Arktika: ekologiya i economika. [Arctic: Ecology and Economy], 2020, no. 3 (39), pp. 6—22. DOI: 10.25283/2223-4594-2020-3-6-22. (In Russian). 10. Bondarev V. N., Rokos S. I., Kostin D. A., Dlugach A. G., Polyakova N. A. Under-permafrost gas accumulations in the upper part of sedimentary cover of the Pechora Sea. Geologiya i geofizika. [Russian Geology and Geophysics], 2002, no. 43 (7), pp. 587—598. (In Russian). 11. Bondur V. G., Kuznetsova T. V. Detection of gas seeps in the Arctic seas using remote sensing data. Issled. Zemli iz kosmosa, 2015, no. 4, pp. 30—43. (In Russian). 12. Brushkov A. V. Global changes of the environment, reaction of cryolithozone and stability of engineering facilities. Inzhener. izyskaniya, 2015, no. 14, pp. 14—26. (In Russian). 13. Gavrilov A.V., Romanovskii N.N., Hubberten H.-W. Paleogeographic scenario of post-glaciation transgression on the Laptev Sea shelf. Kriosfera Zemli. [Earth’s Cryosphere], 2006, vol. 10, no. 1, pp. 39—50. (In Russian). 14. Istomin V. A., Yakushev V. S. Gas hydrates in natural conditions. Moscow, Nedra, 1992, 235 p. (In Russian). 15. Istomin V. A., Yakushev V. S., Makhonina N. A., Kvon V. G., Chuvilin Y. M. Effect of self-preservation of gas hydrates. Gazovaya prom-st’, special issue, 2006, pp. 36—46. (In Russian). 16. Lobkovskiy L. I., Nikiforov S. L., Dmitrevskiy N. N. et al. Mechanisms Responsible for Gas Emission and Underwater Permafrost Degradation on Laptev Sea Shelf. Okeanologiya, 2015, vol. 55, no. 2, pp. 312—320. (In Russian). 17. Melnikov V. P., Spesivtsev V. I., Kulikov V. N. About stream degassing of hydrocarbons as a source of new formation of ice on the Pechora Sea shelf. Results of fundamental research of the Earth cryosphere in the Arctic and Subarctic: Proceedings of the International conference, Puschino, 23—26 April 1996. Melnikov Y. S. (Ed.). Novosibirsk, Nauka, 1997, pp. 259—269. (In Russian). 18. Melnikov V. P., Nesterov A. N., Podenko L. S., Reshetnikov A. M., Shalamov V. V. Metastable states of gas hydrates under pressures lower than ice-hydrate-gas equilibrium pressure. Kriosfera Zemli. [Earth’s Cryosphere], 2011, no. 4, pp. 80—83. (In Russian). 19. Problems of biosphere genesis and evolution. Pt. 2. Ed. by E. M. Galimov. Moscow, KRASAND, 2013, 640 p. (In Russian). 20. Romanovskii N. N., Hubberten H.-W. Permafrost and gas hydrate stability zone on the Laptev Sea shelf (main results of ten-year Russian-German investigation). Kriosfera Zemli. [Earth’s Cryosphere], 2006, vol. 10, no. 3, pp. 61—68. (In Russian). 21. Sergienko V. I., Lobkovskiy L. I., Shakhova N. E. et al. Degradation of underwater permafrost and degradation of hydrates of the Eastern Arctic Shelf seas as a possible cause of a “methane catastrophy”: some results of complex research in 2011. Dokl. Akad. nauk, 2012, vol. 446, no. 3, pp. 330—335. (In Russian). 22. Shakhova N. E., Sergienko V. I., Semiletov I. P. Contribution of the East Siberian Shelf to modern methane cycle. Vestn. Ros. akad. nauk, 2009, vol. 79, no. 6, pp. 507—518. (In Russian). 23. Yakushev V. S. Natural gas and gas hydrates in cryolithozone. Moscow, VNIIgaz, 2009, 192 ð. (In Russian). 24. Baranov B., Galkin S., Vedenin A. et al. Methane seeps on the outer shelf of the Laptev Sea: characteristic features, structural control, and benthic fauna. Geo-Marine Letters, 2020, vol. 40, pp. 541—557. 25. Berger A. Milankovitch theory and climate. Reviews of geophysics, 1988, vol. 26, no. 4, pp. 624—657. 26. Bogoyavlensky V. I., Kerimov V. Yu., Bogoyavlensky V. I., Shayhullina A. A. The Main Guidelines of the Efficiency and Safety Increasing of Hydrocarbon Deposits Exploration and Development on the Arctic and Other Russian Offshore. 8th Saint Petersburg International Conference & Exhibition Saint Petersburg 2018. Innovations in Geosciences — Time for Breakthrough. EAGE, 2018, 5 p. Submission ID: 44704. 27. Bogoyavlensky V., Kishankov A., Yanchevskaya A., Bogoyavlensky I. Forecast of Gas Hydrates Distribution Zones in the Arctic Ocean and Adjacent Offshore Areas. Geosciences, 2018, no. 8, 45317. DOI: 10.3390/geosciences8120453. 28. Bogoyavlensky V. I., Kazanin G. S., Kishankov A. V. Gas saturation of shallow deposits of the Arctic and Subarctic seas. 1st Conference “Marine Technologies”, Gelendzhik. EAGE, 2019, pp. 124—130. 29. Brothers L. L., Hart P. E., Ruppel C. D. Minimum distribution of subsea ice‐bearing permafrost on the US Beaufort Sea continental shelf. Geophysical research letters, 2012, vol. 39, no. 15, pp. 1—6. 30. Cartwright J., Huuse M., Aplin A. Seal bypass systems. AAPG bull., 2007, vol. 91, no. 8, pp. 1141—1166. 31. Cramer B., Franke D. Indications for an active petroleum system in the Laptev Sea, NE Siberia. J. of Petroleum Geology, 2005, vol. 28, no. 4, pp. 369—384. 32. Dlugokencky E. J. Trends in Atmospheric Methane. NOAA. Global Monitoring Laboratory. 2021.03.05. Available at: https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/. 33. Giustiniani M., Tinivella U., Jakobsson M., Rebesco M. Arctic ocean gas hydrate stability in a changing climate. J. Geol. Res., 2013, 783969. 34. Henriet J. P., Mienert J. Gas Hydrates: Relevance to World Margin Stability and Climate Change. Bath, UK, Geological Society of London, 1998, vol. 137, 348 p. 35. Ingle S., Gharib J. Seep Hunting! GEOExPro, October 2018, p. 60—61. Available at: https://www.fugro.com/docs/default-source/translations_import/geo-expro-vol-15-n-5-fugro-seep-hunting.pdf?sfvrsn=ea6de219_2. 36. Judd A., Hovland M. Seabed Fluid Flow. The Impact on Geology, Biology, and the Marine Environment. New York, NY, USA, Cambridge Univ. Press, 2007, 475 p. 37. Judd A. G., Hovland M., Dimitrov L. I. et al. The geological methane budget at continental margins and its influence on climate change. Geofluids, 2002, vol. 2, no. 2, pp. 109—126. 38. Kim Y.-G., Kim S., Lee D.-H. et al. Occurrence of active gas hydrate mounds in the southwestern slope of the Chukchi Plateau, Arctic Ocean. Episodes, 2020, vol. 43, no. 2, pp. 811—823. 39. Kvenvolden K. A., Ginsburg G. D., Soloviev V. A. Worldwide distribution of subaquatic gas hydrates. Geo-Marine Letters, 1993, vol. 13, no. 1, pp. 32—40. 40. McGlade C., Michaels K. C., Gould T. Global methane emissions from oil and gas. Insights from the updated IEA Methane Tracker. IEA, 31 Mar. 2020. Available at: https://www.iea.org/articles/global-methane-emissions-from-oil-and-gas. 41. Romanovskii N. N., Hubberten H.-W., Gavrilov A. V. et al. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-marine letters, 2005, vol. 25, no. 2—3, pp. 167—182. 42. Sapart C.J., Shakhova N., Semiletov I. et al. The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis. Biogeosciences, 2017, vol. 14, no. 9, pp. 2283—2292. 43. Shakhova N., Semiletov I., Sergienko V. et al. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Philosophical Transactions of the Royal Society. A: Mathematical, Physical and Engineering Sciences, 2015, vol. 373, 20140451. 44. Shakhova N., Semiletov I., Gustafsson O. et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nature Communications, 2017, vol. 8, no. 1, pp. 1—13. DOI: 10.1038/ncomms15872. 45. Shakhova N., Semiletov I., Chuvilin E. Understanding the permafrost-hydrate system and associated methane releases in the east Siberian Arctic Shelf. Geosciences, 2019, vol. 9, no. 6, p. 251. Available at: https://doi.org/10.3390/geosciences9060251. 46. Steinbach J., Holmstrand H., Shcherbakova K. et al. Source apportionment of methane escaping the subsea permafrost system in the outer Eurasian Arctic Shelf. PNAS, 2021, vol. 118, no. 10, e2019672118, pp. 1—9. 47. Walter K. M., Smith L. C., Chapin F. S. Methane bubbling from northern lakes: Present and future contributions to the global methane budget. Phil. Trans. R. Soc. A., 2007, vol. 365, no. 1856, pp. 1657—1676. 48. Weaver J. S., Stewart J. M. In situ hydrates under the Beaufort Sea shelf. Proceedings, fourth Canadian permafrost conference. Ottawa, Ont., Natl. Res. Counc. of Can., 1982, pp. 312—319. 49. Williams A. Satellite Seep Detection of Leaking Deep Water Oilfields, Fact or Fantasy? Fugro NPA, UK, May 26, 2010. Available at: https://www.findingpetroleum.com/files/event11/fugro-npa.pdf. 50. Yakushev V. S., Semenov A. P., Bogoyavlensky V. I., Medvedev V. I., Bogoyavlensky I. V. Experimental modeling of methane release from intrapermafrost relic gas hydrates when sediment temperature change. Cold Regions Science and Technology, 2018, vol. 149, pp. 46—50. DOI: 10.1016/j.coldregions.2018.02.007. 51. Atlas of the Arctic. A. F. Treshnikov (Ed.). Moscow, Gl. Upr. geodezii i kartografii pri Sovete Ministrov SSSR, 1985, 203 ð. (In Russian). 52. Kim B. I., Yevdokimova N. K., Kharitonova L. Y. et al. Sedimentary cover of the Laptev Sea shelf and its petroleum potential. Geologiya nefti i gaza. [Russian Oil and Gas Geology], 2011, no. 6, pp. 116—131. (In Russian). 53. Drachev S. S., Malyshev N. A., Nikishin A. M. Tectonic history and petroleum geology of the Russian Arctic Shelves: an overview. Geological Society, London, petroleum geology conference series. Geological Society of London, 2010, vol. 7, no. 1, pp. 591—619. 54. Gramberg I. S., Demenitskaya R. M., Sekretov S. B. System of rift grabens of the Laptev Sea shelf as a missing part of the Gakkel Ridge — Momskiy Ridge belt. Dokl. AN SSSR, 1990, vol. 311, no. 3, pp. 689—694. (In Russian). 55. Drachev S. S. Tectonics of the rift system of the Laptev Sea bottom. Geotektonika, 2000, vol. 6, pp. 43—58. (In Russian). 56. Drachev S. S., Shkarubo S. I. Tectonics of the Laptev Shelf, Siberian Arctic. Circum-Arctic Lithosphere Evolution. Eds. V. Pease, B. Coakley. Geological Society, London, Special Publications, 2018, vol. 460, no. 1, pp. 263—283. DOI: 10.1144/SP460.15. 57. Rekant P. V., Gusev E. A. The seismic-acoustic evidences of the recent tectonics on the Laptev sea continental margin. Problemy Arktiki i Antarktiki, 2009, no. 2, pp. 85—94. (In Russian). 58. Avetisov G. P. Again about earthquakes in the Laptev Sea. Geologo-geofizicheskiye kharakteristiki litosphery Arkticheskogo regiona. Iss. 3. St. Petersburg, VNIIOkeangeologia, 2000, pp. 104—114. (In Russian). 59. Shipilov E. V., Lobkovskiy L. I., Shkarubo S. I. Structure of the Khatanga-Lomonosov Fault Zone based on seismic data. Dokl. Akad. nauk, 2019, vol. 487, no. 3, pp. 304—309. (In Russian). 60. Shipilov E. V., Lobkovskiy L. I., Kirillova T. A. On tectonic-geodynamic relationships of the Eurasian Basin and the Lomonosov Ridge with the continental margin of Siberia according to new seismic data. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2020, no. 4 (40), pp. 34—42. DOI: 10.25283/2223-4594-2020-4-34-42. (In Russian). 61. Report on the object “Regional complex geophysical research with the objective of assessment of oil and gas bearing perspectives of the Central Laptev Area and sedimentary basins of the Laptev Sea continental margin”. State contract no. 15/03/70-20, 6th July 2009. Responsible executor Kirillova T. A. Murmansk, JSC “MAGE”, 2011. (In Russian). 62. Kirillova-Pokrovskaya T. A. Actualized model of the Laptev Sea structure and main HC traps of structural class. Innovatsionnyi vector razvitiya OAO “MAGE”. Sb. statey OAO “MAGE”. St. Petersburg, 2017, pp. 228—251. (In Russian). 63. World Ocean Database Select and Search. National Centers for Environmental Information, National Oceanic and Atmospheric Administration. Available at: https://www.ncei.noaa.gov/access/world-ocean-database-select/dbsearch.html. 64. Tissot B. P., Welte D. H. Petroleum Formation and Occurrence. Second edition. Berlin, Springer-Verl., 1984. Download » | ||||
© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594
|