| ||||
| ||||
Home » Archive of journals » Volume 11, No. 1, 2021 » Fundamental aspects of the catastrophic gas blowout genesis and the formation of giant craters in the Arctic FUNDAMENTAL ASPECTS OF THE CATASTROPHIC GAS BLOWOUT GENESIS AND THE FORMATION OF GIANT CRATERS IN THE ARCTICJOURNAL: Volume 11, No. 1, 2021, p. 51-66HEADING: Research activities in the Arctic AUTHORS: Bogoyavlensky, V.I. ORGANIZATIONS: Oil and Gas Research Institute of RAS DOI: 10.25283/2223-4594-2021-1-51-66 UDC: 502.171, 504.4, 504.7 The article was received on: 01.12.2020 Keywords: Bovanenkovo field, gas hydrates, remote sensing of the Earth, heat flow, thermokarst, Yamal peninsula, gas-saturated cavities, cryolithosphere, geothermy, ice melting, abnormally high reservoir pressures (AHRP) Bibliographic description: Bogoyavlensky, V.I. Fundamental aspects of the catastrophic gas blowout genesis and the formation of giant craters in the Arctic. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2021, vol. 11, no. 1, pp. 51-66. DOI: 10.25283/2223-4594-2021-1-51-66. (In Russian). Abstract: The article considers the fundamental aspects of powerful explosive degassing of the Earth in the north of Western Siberia (mainly Yamal). The author presents the results of a comprehensive analysis and compilation of a large volume of factual materials obtained during field studies of a number of catastrophic gas blowout objects in 2014—2020. The author outlines that most of the craters found in Yamal are confined to the zone of anomalous heat flow in the area of the Bovanenkovskoye field. The researcher substantiates the process formation model of gas-saturated cavities in the massifs of ground ice, heaving mounds, blowouts and self-ignition of gas with the formation of giant craters and formulates the main features of powerful explosive degassing in the Arctic. Finance info: The research was conducted according to the state assignment on the topic “Rational nature management and effective development of oil and gas resources of the Arctic and Sub-Arctic zones of the Earth” (No. ÀÀÀÀ-À19-119021590079-6). The author is grateful: to the Russian Academy of Sciences and the Government of the Yamalo-Nenets Autonomous District for continuous support of scientific research in the Arctic; to PJSC NOVATEK and OJSC Yamal LNG for their extensive and repeated assistance in organizing fields studies; to PJSC Gazprom for assistance in scientific research References: 1. Badu Y. B. Cryogenic stratum of gas-bearing structures of Yamal. On the influence of gas deposits on the formation and development of a cryogenic stratum. Moscow, Nauch. mir, 2018, 232 p. (In Russian). 2. Bogoyavlensky V. I. The threat of catastrophic gas blowouts form the Arctic cryolithozone. Yamal craters. Burenie i neft’, 2014, no. 9, pp. 13—18. (In Russian). 3. Bogoyavlensky V. I. The threat of catastrophic gas blowouts form the Arctic cryolithozone. Yamal and Taymyr craters. Pt. 2. Burenie i neft’, 2014, no. 10, pp. 4—8. (In Russian). 4. Bogoyavlensky V. I. Arctic and the World Ocean: current state, perspectives and challenges of hydrocarbon production. Tr. Volnogo ekon. o-va, 2014, vol. 182, no. 3, pp. 12—175. (In Russian). 5. Bogoyavlensky V. I., Garagash I. A. Substantiation of the process of formation of gas emission craters in the Arctic by mathematical modeling. Arktika: ekologiya i ekonomika, 2015, no. 3 (19), pp. 12—17. (In Russian). 6. Bogoyavlensky V. I., Bogoyavlensky I. V., Nikonov R. A. Results of aerial, space and field investigations of large gas blowouts near Bovanenkovo field on Yamal Peninsula. Arktika: ekologiya i ekonomika, 2017, no. 3 (27), ð. 4—17. DOI: 10.25283/2223-4594-2017-3-4-17. (In Russian). 7. Bogoyavlensky V. I. Gas-hydrodynamics in the Arctic craters of gas blowout. Arktika: ekologiya i ekonomika, 2018, no. 1 (29), pp. 48—55. DOI: 10.25283/2223- 4594-2018-1-48-55. (In Russian). 8. Bogoyavlensky V. I., Sizov O. S., Mazharov A. V., Bogoyavlensky I. V., Nikonov R. A., Kargina T. N., Kishankov A. V. Earth degassing in the Arctic: remote and field studies of the Seyakha catastrophic gas blowout on the Yamal Peninsula. Arktika: ekologiya i ekonomika, 2019, no. 1 (33), pp. 88—105. DOI: 10.25283/2223-4594-2019- 2-31-47. (In Russian). 9. Bogoyavlensky V. I. Natural and technogenic threats in fossil fuels production in the Earth cryolithosphere. Gor. prom-st’, 2020, no. 1 (149), pp. 97—118. DOI: 10.30686/1609-9192-2020-1-97-118. (In Russian). 10. Bogoyavlensky V. I., Sizov O. S., Nikonov R. A., Bogoyavlensky I. V., Kargina T. N. Earth degassing in the Arctic: the genesis of natural and anthropogenic methane emissions. Arktika: ekologiya i ekonomika, 2020, no. 3 (39), pp. 6—22. DOI:10.25283/2223-4594-2020-3-2-22. (In Russian). 11. Bogoyavlensky V. I., Bogoyavlensky I. V., Kargina T. N., Nikonov R. A. Digital technologies for remote detection and monitoring of the development of heaving mounds and craters of catastrophic gas blowouts in the Arctic. Arktika: ekologiya i ekonomika, 2020, no. 4 (40), pp. 90—105. DOI: 10.25283/2223-4594-2020-4-90-105. (In Russian). 12. Bogoyavlensky V. Gas Blowouts on the Yamal and Gydan Peninsulas. GeoExPro [London], 2015, vol. 12, no. 5. — ðð. 74—78. 13. Bogoyavlensky V. I. Innovative Technologies and Results of Studying Processes of Natural and Man-Made Degassing of the Earth in the Lithosphere-Cryosphere-Hydrosphere-Atmosphere System. Third International Conference on Geology of the Caspian Sea and Adjacent Areas (Baku, 2019), 2019. — 5 p. DOI: 10.3997/2214-4609.201952015. 14. Bogoyavlensky V., Bogoyavlensky I., Nikonov R., Kishankov A. Complex of Geophysical Studies of the Seyakha Catastrophic Gas Blowout Crater on the Yamal Peninsula, Russian Arctic. Geosciences, 2020, 10, 215. — 22 p. Available at: https://doi.org/10.3390/geosciences10060215. 15. Bogoyavlensky V. I., Yerokhin G. N., Nikonov R. A., Bogoyavlensky I. V., Bryksin V. M. Passive seismic monitoring study of the Earth degassing in the Arctic. EAGE, Geomodel 2020, Sep 2020, vol. 2020, pp. 1—5. Available at: https://doi.org/10.3997/2214-4609.202050102. 16. Bogoyavlensky V., Bogoyavlensky I., Nikonov R., Kargina T., Chuvilin E., Bukhanov B., Umnikov A. New catastrophic gas blowout and giant crater on the Yamal Peninsula in 2020: results of the expedition and data processing. Geosciences, 2021, 11, 71. Available at: https://doi.org/10.3390/geosciences11020071. 17. Dvornikov Y., Leibman M., Khomutov A. et al. Gas-emission craters of the Yamal and Gydan peninsulas: Aproposed mechanism for lake genesis and development of permafrost landscapes. Permafr. Periglac. Process, 2019, 30, pp. 146—162. 18. Kizyakov A. I., Sonyushkin A. V., Leibman M. O. et al. Geomorphological conditions for the formation of a gas outburst funnel and the dynamics of this form in Central Yamal. Kriosfera Zemli, 2015, 2, pp. 15—25. (In Russian). 19. Kizyakov A., Khomutov A., Zimin M. et al. Microrelief associated with gas emission craters: Remote-sensing and field-based study. Remote Sens., 2018, 10, p. 677. 20. Kizyakov A., Leibman M., Zimin M. et al. Gas Emission Craters and Mound-Predecessors in the North of West Siberia, Similarities and Differences. Remote Sens., 2020, 12, p. 2182. DOI: 10.3390/rs12142182. 21. Leibman M. O., Plekhanov A. V. Yamal gas outlet funnel: results of preliminary examination. Kholodok, 2014, no. 2 (12), pð. 9—15. (In Russian). 22. Leibman M. O., Dvornikov Yu. A., Streletskaya I. D. et al. Relationship between the formation of gas outburst funnels and methane emissions in the north of Western Siberia. Aktual’nyye problemy nefti i gaza, 2018, no. 4 (23), pp. 1—4. (In Russian). 23. Olenchenko V. V., Sinitsky A. I., Antonov E. Yu. et al. Results of geophysical studies of the territory of the geological formation “Yamal crater”. Kriosfera Zemli, 2015, XIX, 4, ðð. 94—106. (In Russian). 24. Sizov O. S. Remote analysis of the surface gas shows consequences in the north of Western Siberia. Geomatika, 2015, no. 1, pp. 53—68. (In Russian). 25. Streletskaya I. D., Leibman M. O., Kizyakov A. I. et al. Ground ice and its role in the formation of gas-emission crater in the Yamal peninsula. Vestn. Mosk. un-ta. Ser. 5. Geografiya, 2017, no. 2, ðð. 91—99. (In Russian). 26. Khimenkov À. N., Sergeev D. O., Vlasov A. N. et al. Explosive processes in the permafrost zone as a new type of geocryological hazard. Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya, 2019, no. 6, ðð. 30—41. (In Russian). 27. Buldovicz S. N., Khilimonyuk V. Z., Bychkov A. Y. et al. Cryovolcanism on the earth: Origin of a spectacular crater in the Yamal Peninsula (Russia). Sci. Rep., 2018, 8, p. 13534. 28. Chuvilin E., Stanilovskaya J., Titovsky A. et al. A Gas-emission crater in the Erkuta River valley, Yamal Peninsula: characteristics and potential formation model. Geosciences, 2020, 10, p. 170. 29. Chuvilin E., Sokolova N., Davletshina D. et al. Conceptual models of gas accumulation in the shallow permafrost of Northern West Siberia and conditions for explosive gas emissions. Geosciences, 2020, 10, p. 195. 30. Kotlyakov V. M., Komarova A. I. Elsevier’s dictionary of geography. [S. l.], Elsevier, 2007. 1073 p. 31. Badu Y. B., Trofimov V. T., Vasilchuk Yu. K. Main patterns of distribution and types of stratal deposits of underground ice in the northern chatsa of the West Siberian plate. Plastovyye l’dy kriolitozony. Yakutsk, IM SO AN SSSR, 1982, pð. 13—24. (In Russian). 32. Dubikov G. I., Koreisha M. M. Injected fossil ice on the Yamal Peninsula. Izv. AN SSSR, ser. geograf., 1964, no. 5, p. 58—65. (In Russian). 33. Vasilchuk Yu. K. Isotope Ratios in the Environment. Pt. 2. Stable isotope geochemistry of massive ice. 2 Vols. Vol. 2 Moscow, Moscow Univ. Press, 2014, 244 p. (In Russian). 34. Kaplyanskaya F. A. Reservoir deposits of underground ice in glacial deposits on the western coast of the Yamal Peninsula near the village Kharasavey. Plastovyye l’dy kriolitozony. Yakutsk, IM SO AN SSSR, 1982, pð. 71—80. (In Russian). 35. Koreisha M. M., Khimenkov A. H., Bryksina G. S. On the origin of stratal deposits of underground ice in the north of Western Siberia. Materialy glyatsiol. issled., 1981, no. 41, pð. 62—66. (In Russian). 36. Streletskaya I. D., Vasiliev A. A., Oblogov G. E. et al. Methane in ground ice and frozen sediments in the coastal zone and on the shelf of Kara Sea. Led i Sneg. Ice and Snow, 2018, 58 (1), pp. 65—77. DOI: 10.15356/2076-6734-2018-1-65-77ea. (In Russian). 37. Shpolyanskaya N. A., Streletskaya I. D. Genetic types of sheet ice and features of their distribution in the Russian Subarctic. Kriosfera Zemli, 2004, vol. 8, no. 4, pð. 56—71. (In Russian). 38. Harris S. A., French H. M., Heginbottom J. A. et al. Glossary of Permafrost and Related Ground-Ice Terms. Technical Memorandum no. 142. National Research Council of Canada 1988. 156 p. 39. Bogoyavlensky V. I., Budagova T. A., Bezhentsev A. V. Thermobaric conditions of the Western Arctic oil and gas deposits. New methods and technology in development and production of oil and gas — onshore and offshore. Geopetrol-2010, Krakow, 2010, pp. 407— 419. 40. Bogoyavlensky V. I. Thermobaric conditions and oil and gas content of deeply submerged sediments in the Western Arctic. Ustoychivoye razvitiye i mezhdunarodnoye sotrudnichestvo. Apatity, GI KNTs RAN, 2010, pð. 6—8. (In Russian). 41. Skorobogatov V. A., Stroganov L. V., Kopeev V. D. Geological structure and oil and gas potential of Yamal. Moscow, OOO “Nedra-Biznestsentr”, 2003, 352 p. (In Russian). 42. Brekhuntsov A. M., Monastyrev B. V., Nesterov I. I., Skorobogatov V. A. Oil and gas geology of the West Siberian Arctic. Tyumen, ÎÎÎ MNP Geodata, 2020, 464 p. (In Russian). 43. Geological map of Russia and adjoining water areas. Scale 1:2 500 000. [S. l.], Rosnedra, VSEGEI, VNIIOceanologiya, 2004. (In Russian). 44. Dvoretsky P. I., Goncharov V. S., Esikov A. D. et al. Isotopic composition of natural gases in the north of Western Siberia. Obzor. Moscow, IRTs JSC “Gazprom”, 2000, 80 p. (In Russian). 45. Ivanov K. S., Kostrov N. P. Heat flux density, mantle structure and oil and gas potential of the Yamal Peninsula (Arctic). Litosfera, 2020, 20 (6), pp. 851—862. (In Russian). 46. Khutorskoy M. D., Antonovskaya G. N., Basapkina I. M. et al. Seismicity, heat flow and tectonics of the West Arctic basin. Monitoring. Nauka i tekhnologii, 2015, no. 3 (24), pp. 23—32. (In Russian). 47. Duchkov A. D., Sokolova L. S. Heat flow of Siberia. Novosibirsk, Izd-vo INGG SO RAN, 2014, pp. 211—216. (In Russian). 48. Isaev V. I., Lobova G. A., Fomin A. N. et al. Heat flow and oil and gas content (Yamal peninsula, Tomsk region). Georesursy, 2019, 21 (3), pð. 125—135. (In Russian). 49. Romanovsky V. E., Smith S. H., Christiansen H. H. Permafrost Thermal State in the Polar Northern Hemisphere during the International Polar Year 2007—2009: a Synthesis. Permafrost and Periglac. Process, 2010, 21, pp. 106—116. DOI: 10.1002/ppp.689. 50. Istomin V. A., Chuvilin E. M., Sergeeva D. V. et al. Influence of gas composition and pressure on ice and hydrate formation in gas-saturated pore solutions. NefteGazoKhimiya, 2018, no. 2, pp. 33—42. (In Russian). 51. Wagner W., Saul A., Pru A. International equations for the pressure along the melting curve and the sublimation curve of ordinary water substance. J. Phys. Chem. Ref. Data, 1994, no. 23, pp. 515—527. 52. Melnikov V. P., Nesterov A. N., Podenko L. S., Reshetnikov A. M. Influence of carbon dioxide on the melting of underground ice. Reports of the Academy of Sciences, 2014, vol. 459, no. 1, pp. 1353—1355. (In Russian). 53. Sloan E. D., Koh C. A. Clathrate Hydrate of Natural Gases. Boca Raton: Taylor & Francis Group, 2008, 721 p. Available at: https://doi.org/10.1201/9781420008494. 54. Yakushev V. S. Natural gas and gas hydrates in the cryolithozone. Moscow, VNIIgaz, 2009, 192 p. (In Russian). 55. Are F. E. The problem of emission of deep gases into the atmosphere. Kriosfera Zemli, 1998, vol. 2, no. 4, p. 42—50. (In Russian). 56. Duchkov A. D., Lysak S. V., Golubev V. A. et al. Heat flow and geothermal field of the Baikal region. Geologiya i geofizika, 1999, vol. 40, no. 3, pð. 287—303. (In Russian). 57. Kotlyakov V. M., Alekseyev V. R., Volkov N. V. et al. Glaciological Dictionary. Ed. by V. M. Kotlyakov. Leningrad, Gidrometeoizdat, 1984, 528 p. (In Russian). 58. Belova N. G. Sheet ice on the southwestern coast of the Kara Sea. Moscow, MAKS Press, 2014, 180 p. (In Russian). 59. Mackay J. R. Gas-domed mounds in permafrost, Kendall Island, N.W.T. Geographical Bull., 1965, vol. 7, no. 2, pp. 105—115. 60. Zimbelman D. R., Rye R. O., Landis G. P. Fumaroles in ice caves on the summit of Mount Rainier — Preliminary stable isotope, gas, and geochemical studies. J. Volcanol. Geotherm. Res., 97 (1—4), pp. 457—473. 61. Curtis A., Kyle P. Geothermal point sources identified in a fumarolic ice cave on Erebus volcano, Antarctica using fiber optic distributed temperature sensing. Geophysical Research Letters, 2011, 38 (16), p. L16802. DOI: 10.1029/2011GL048272. 62. Why are geothermal ice caves more dangerous than caves created by meltwater? Iceland Magazine, 2018, March 26. Available at: https://icelandmag.is/article/why-are-geothermal-ice-caves-more-dangerous-caves-created-meltwater. 63. Mutnovsky volcano in Kamchatka: ice and flame inside the crater. Available at: https://kamchatkaland.ru/note/vulkan-mutnovskij. (In Russian). 64. Pelto M. Paradise Glacier Ice Caves Lost. 2010. Available at: https://glacierchange.wordpress.com/ 2010/04/29/paradise-glacier-ice-caves-lost/. 65. Olenchenko V. V., Gagarin L. A., Khristovorov I. I. et al. The structure of the site for the development of thermal diffusion processes within the Besteyakhskaya terrace of the Lena River according to geophysical data. Kriosfera Zemli, 2017, vol. ÕÕI, no. 5, pð. 16—26. DOI: 10.21782/KZ1560-7496-2017-5(16-26). (In Russian). Download » | ||||
© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594
|