Arctic: ecology and economy
ISSN 2223-4594
Home Archive of journals Issue 4(40) 2020 Analysis of technological and technical advances in the study of subaqueous gas hydrates and the possibility of their application in the Arctic seas of Russia


JOURNAL: 2020, 4(40), p. 66-76

HEADING: Study and development of nature resources of the Arctic

AUTHORS: Logvina E.A., Matveeva T.V., Bochkarev A.V., Semenova A.A., Nazarova O.V.

ORGANIZATIONS: I. S. Gramberg All-Russia Scientific Research Institute for Geology and Mineral Resources of the Ocean

DOI: 10.25283/2223-4594-2020-4-66-76

UDC: 550.812.1

The article was received on: 09.06.2020

Keywords: Arctic seas, gas hydrates, oceanic cryolithozone, geological sampling, sealed samplers (SS), sealed sample analyzers (SSA)

Bibliographic description: Logvina E.A., Matveeva T.V., Bochkarev A.V., Semenova A.A., Nazarova O.V. Analysis of technological and technical advances in the study of subaqueous gas hydrates and the possibility of their application in the Arctic seas of Russia. Arctic: ecology and economy, 2020, no. 4(40), pp. 66-76. DOI: 10.25283/2223-4594-2020-4-66-76. (In Russian).


The current stage of strategic development of Russia’s economic and scientific interests is characterized by the study and subsequent development of hydrocarbon resources of the continental shelf and the bottom of the World Ocean. At the same time, special attention is paid to the waters of the Arctic seas, the ecological and climatic changes of which are interconnected with the degradation of underwater permafrost and associated gas hydrates. To study the latter, specialized equipment is needed to take unmodified samples of natural gas hydrates. The paper analyzes the technical characteristics and analytical capabilities of modern samplers and analyzers and evaluates the possibilities of their use for studying hydrate-containing sediments in the Arctic seas.

Finance info: The Russian Science Foundation supported this work; grant no. 19-17-00226 Reconstruction of the mechanism of problematic authigenic carbonates formation in diagenetic and categenetic environments associated with the generation/oxidation of hydrocarbons.


1. Vonk J. E., Sánchez‐García L., Van Dongen B. et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature, 2012, no. 489, pp. 137—140. DOI: 10.1038/nature11392.

2. Overduin P., Schneider von Deimling T., Miesner F. et al. Submarine permafrost map in the Arctic modelled using 1d transient heat flux (SuPerMAP). J Geophys Res Oceans, 2019, vol. 124, no. 6, pp. 3490—3507. DOI: 10.1029/2018JC014675.

3. Angelopoulos M., Overduin P. P., Miesner F., Grigoriev M. N., Vasiliev A. A. Recent advances in the study of Arctic submarine permafrost. Permafrost and Periglacial Processes, 2020, vol. 31, no. 3, pp. 1—12. DOI: 10.1002/ppp.2061.

4. Ginsburg G. D., Soloviev V. A. Submarine gas hydrates. St. Petersburg, VNIIOkeangeologiya, 1998, 216 p.

5. Istomin V. A., Yakushev V. S., Makhonina N. A., Kvon V. G., Chuvilin E. M. Effekt samokonservacii gazovyh gidratov. [The effect of self-preservation of gas hydrates]. Gazovaya prom-st’, 2006, pp. 36—47. (In Russian).

6. Matveeva T. V. Obrazovanie gidratov uglevodorodnykh gazov v subakval’nykh obstanovkakh. [Formation of hydrates of hydrocarbon gases in subaqueous environments]. Mirovoi okean. Vol. 3. Tverdye poleznye iskopaemye i gazovye gidraty v okeane. Otv. red. L. I. Lobkovskii, G. A. Cherkashev. Moscow, Nauch. mir, 2018, pp. 586—697. (In Russian).

7. Solov’ev V. A., Ginsburg G. D., Telepnev E. V., Mikhalyuk Yu. N. Kriogeotermiya i gidraty prirodnogo gaza v nedrakh Severnogo Ledovitogo okeana. [Cryogeothermy and natural gas hydrates in the bowels of the Arctic Ocean]. Leningrad, PGO “Sevmorgeologiya”, 1987, 150 p. (In Russian).

8. Portnov A., Mienert J., Serov P. Modeling the evolution of climate-sensitive Arctic subsea permafrost in regions of extensive gas expulsion at the West Yamal shelf. J. of geophysical research: Biogeosciences, 2014, 119, pp. 2082—2094. DOI: 10.1002/2014JG002685.

9. Rekant P., Bauch H. A., Schwenk T. et al. Evolution of subsea permafrost landscapes in Arctic Siberia since the Late Pleistocene: a synoptic insight from acoustic data of the Laptev Sea. Arktos, 2015, vol. 1, no. 11. DOI: 10.1007/s41063-015-0011-y.

10. Overduin P. P., Haberland C., Ryberg T. et al. Submarine permafrost depth from ambient seismic noise. Geophys Res Lett., 2015, vol. 42, no. 18, pp. 7581—7588. DOI: 10.1002/2015GL065409.

11. Overduin P. P., Wetterich S., Günther F. et al. Coastal dynamics and submarine permafrost in shallow water of the central Laptev Sea, East Siberia. Cryosphere, 2016, vol. 10, no. 4, pp. 1449—1462. DOI: 10.5194/tc-10-1449-2016.

12. Koshurnikov A. V., Tumskoy V. E., Shakhova N. E. et al. The first ever application of electromagnetic sounding for mapping the submarine permafrost table on the Laptev Sea Shelf. Doklady Earth Sci., 2016, vol. 469, pp. 860—863.

13. You Y., Yu Q., Pan X., Wang X., Guo L. Geophysical imaging of permafrost and talik configuration beneath a thermokarst lake. Permafr Periglac Process, 2017, vol. 28, no. 2, pp. 470—476. DOI: 10.1002/ppp.1938.

14. Sherman D., Kannberg P., Constable S. Surface towed electromagnetic system for mapping of subsea arctic permafrost. Earth Planet Sci Lett., 2017, vol. 460, pp. 97—104. DOI: 10.1016/j.epsl.2016.12.002.

15. Kvenvolden K. A., Barnard L. A., Cameron D. H. Pressure core barrel: Application to the study of gas hydrates, deep-sea drilling project site 533, leg 76. Initial Reports DSDP, 1982, vol. 76, pp. 367—375.

16. Yakushev V. S., Basniev K. S., Adzynova F. A., Gryaznova I. V., Voronova V. V. Priznaki nalichiya na severe Zapadnoi Sibiri regional’no gazonosnogo gorizonta novogo tipa. [Attributes of a regional new-type gas-bearing horizon presence at north of Western Siberia]. Neftyanoye khoz-vo, 2014, no. 11, pp. 100—101. (In Russian).

17. Donnyi probootbornik. [Bottom sampler]. USSR Author’s certificate. SSSR. S. A. Nikishchenko, V. G. Moiseenko, M. A. Gots, I. V. Blyashin (USSR). No. SU 568861 A1, 1989, 3 p. (In Russian).

18. Karasevich A. M., Storonskij N. M., Khrjukin V. T., Kejbal A. V., Barantsevich S. V. Kernogazonabornik. [Core and gas sampler]. Invention, RU 2209992 C1, 2003, 12 p. (In Russian).

19. Chistjakov V. K., Maljarenko E. V., Vishnevskij N. A. Sposob polucheniya kerna iz gidratosoderzhashchih porod i ustrojstvo dlya ego osushchestvleniya. [Method of recovery of core out of hydrate containing rock and facility for implementation of this method]. Invention, RU 2369719 1, 2009, 9 p. (In Russian).

20. Chistjakov V. K., Vishnevskij N. A., Mal’tsev N. A. Ustroistvo dlya polucheniya kerna iz gidratosoderzhashchikh porod. [Device for obtaining core from hydrate-containing rocks]. Invention, RU 2425952 1, 2011, 6 p. (In Russian).

21. Pettigrew T. L. The design and operation of a wireline pressure core sampler (PCS). ODP Technical Note 17, 1992, 2 p.

22. Abegg F., Hohnberg H. J., Pape T., Bohrmann G., Freitag J. Development and application of pressure-core-sampling systems for the investigation of gas- and gas-hydrate bearing sediments. Deep Sea Res., Pt. I. Oceanogr Res Pap, 2008, vol. 55, no. 11, pp. 1590—1599. DOI: 10.1016/j.dsr.2008.06.006.

23. Jackson K., Witte U., Chalmers S., Anders E., Parkes J. A system for retrieval and incubation of benthic sediment cores at in situ ambient pressure and under controlled or manipulated environmental conditions. J. of Atmospheric and Oceanic Technology, 2017, vol. 34, no. 5, pp. 983—1000.

24. Rack F. “Preliminary Evaluation of Existing Pressure/Temperature Coring Systems”. From in-situ sampling and characterization of naturally occurring marine hydrate using the D/V JOIDES resolution. Joint Oceanographic Institutions. Oct. 2001.

25. Schultheiss P., Holland M., Roberts J., Bigalke N., Mimitz M. Advances in wireline pressure coring, core handling, and core analysis related to gas hydrate drilling investigations. 9th International Conference on Gas Hydrates. Denver, Colorado USA, 2017, 14.

26. Schultheiss P. J., Francis T. J. G, Holland M., Roberts J. A., Amann H., Thjunjoto Parkes R. J., Martin D., Rothfuss M., Tyunder F., Jacksonl P. D. Pressure coring, logging and subsampling with the HYACINTH system. New Techniques in Sediment Core Analysis. G. Rothwell (eds.). Geol. Soc. London. Spec. Pub., 2006, vol. 267, pp. 151—163. DOI: 10.1144/GSL.SP.2006.267.01.11.

27. Collett T., Bahk J., Frye M., Goldberg D., Husebo J., Koh C., Malone M., Shipp C., Torres M. Historical methane hydrates project review. Report prepared for the U.S Department of Energy — national Energy Technology Laboratory by the Consortium for Ocean Leadership. Part 1:110; Part 2:32; Part 3:42. 2013.

28. Pape T., Hohnberg H.-J., Wunsch D., Anders E., Freudenthal T., Huhn K., Bohrmann G. Design and deployment of autoclave pressure vessels for the portable deep-sea drill rig MeBo (Meeresboden-Bohrgerät). Science Drilling, 2017, vol. 23, pp. 29—37. DOI: 10.5194/sd-23-29-2017.

29. Geotek Ltd. (UK). Available at: https://www.geotek.co.uk/.

30. Santamarina J. C., Dai Sh., Jang J., Terzariol M. Pressure core characterization tools for hydrate-bearing sediment. Scientific Drilling, 2012, vol. 14, pp. 44—48. DOI: 10.2204/iodp.sd.14.06.2012.

31. Nagao J., Yoneda J., Konno Y., Jin Yu. Development of the Pressure-core Nondestructive Analysis Tools (PNATs) for methane hydrate sedimentary cores. Geophysical Research Abstracts. EGU General Assembly 2015, vol. 17, EGU2015-8345.

32. Istomin V. A., Yakushev V. A. Issledovanie gazovykh gidratov v Rossii. [Research of gas hydrates in Russia]. Gazovaya prom-st’, 2001, no. 6, pp. 49—53. (In Russian).

33. Yun T. S., Narsilio G. A., Santamarina J. C., Ruppel C. Instrumented pressure testing chamber for characterizing sediment cores recovered at in situ hydrostatic pressure. Mar. Geol., 2006, vol. 229, no. 3-4, pp. 285—293. DOI: 10.1016/j.margeo. 2006.03.012.

34. Yang S., Lei Y., Liang J., Holland M., Schultheiss P., Lu J., Wei J. Concentrated gas hydrate in the Shenhu area, South China Sea: Results from Drilling Expeditions GMGS3 & GMGS4. Proceedings of 9th International Conference on Gas Hydrates. Denver, 2017. Paper no. 105.

35. Lee M. W. Collett T. S. Gas Hydrate Saturations Estimated from Fractured Reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India. J Geophys Res, 2009, vol. 114, pp. 1—13.

36. Dakhnov V. N. Interpretaciya karotazhnykh diagramm. [Interpretation of well logs]. Moscow, Leningrad, 1941, 496 p. (In Russian).

37. Archie G. E. The Electrical Resistivity Log as Aid in Determining Some Reservoir Characteristics. Transactions of the AIME, 1942, 146, pp. 54—62.

38. Suzuki K., Schultheiss P, Nakatsuka Y., Ito T., Egawa K., Holland M., Yamamoto K. Physical properties and sedimentological features of hydrate-bearing samples recovered from the first gas hydrate production test site on Daini-Atsumi Knoll around eastern Nankai Trough. Mar Pet Geol, 2015, vol. 66, no. 2, pp. 346—357. DOI: 10.1016/j.marpetgeo.2015.02.025.

39. Nagano Yu, Lin Weiren, Yamamoto K. In-situ stress analysis using the anelastic strain recovery (ASR) method at the first offshore gas production test site in the eastern Nankai Trough, Japan. Mar Petr Geol, 2015, vol. 66, no. 2, pp. 418—424. DOI: 10.1016/j.marpetgeo.2015.02.027/.

40. Yamamoto K. Overview and introduction: Pressure core sampling and analyses in the 2012-2013 MH21 offshore test of gas production from methane hydrates in the eastern Nankai Trough. Mar Petr Geol, 2015, vol. 66, no. 2, pp. 296—309. DOI: 10.1016/j.marpetgeo.2015.02.024/.

41. Yamamoto K., Inada N., Kubo Fujii T., Suzuki K., Konno Y. Shipboard Scientists for the Methane Hydrate Offshore Production Test. Pressure Core sampling in the eastern Nankai Trough. Methane Hydrate Newsletter, 2012, vol. 12, no. 2, pp. 1—9.

42. Konno Y., Jin Y., Yoneda J., Kida M., Egawa K., Ito T., Suzuki K., Nagao J. Effect of methane hydrate morphology on compressional wave velocity of sandy sediments: Analysis of pressure cores obtained in the Eastern Nankai Trough. Mar Petr Geol, 2015, vol. 66, pp. 425—433. DOI: 10.1016/J.MARPETGEO.2015.02.021.

43. Zhao J., Yang L., Liu Yu., Song Y. Microstructural characteristics of natural gas hydrates hosted in various sand sediments. Physical chemistry chemical physics. Phys Chem Chem Phys, 2015, vol. 17, pp. 22632—22641. DOI: 10.1039/c5cp03698d.

44. Inada N., Yamamoto K. Data Report: Hybrid Pressure Coring System tool review and summary of recovery result from gas-hydrate related coring in the Nankai Project. Mar Petr Geol, 2015, 6 (2), pp. 323—345. DOI: 10.1016/j.marpetgeo.2015.02.023.

Download »

© 2011-2021 Arctic: ecology and economy
DOI 10.25283/2223-4594