Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » No. 2(38) 2020 » Application of space technologies in metallogenic analysis of the Russian Arctic territory

APPLICATION OF SPACE TECHNOLOGIES IN METALLOGENIC ANALYSIS OF THE RUSSIAN ARCTIC TERRITORY

JOURNAL: No. 2(38) 2020, p. 77-85

HEADING: Study and development of nature resources of the Arctic

AUTHORS: Volkov, A.V., Galyamov, A.L., Belousov, P.E., Wolfson, A.A.

ORGANIZATIONS: Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of RAS

DOI: 10.25283/2223-4594-2020-2-77-85

UDC: 553.411(571.56-18)

The article was received on: 08.04.2020

Keywords: Arctic zone, remote sensing, space technologies, gravimetric space survey, Earh crust, upper mantle, metallogenic analysis, global model

Bibliographic description: Volkov, A.V., Galyamov, A.L., Belousov, P.E., Wolfson, A.A. Application of space technologies in metallogenic analysis of the Russian Arctic territory. Arctic: ecology and economy, 2020, no. 2(38), pp. 77-85. DOI: 10.25283/2223-4594-2020-2-77-85. (In Russian).


Abstract:

Today, cosmonautics is, first, research in fundamental science, which in turn creates applied technologies. This article discusses the space technologies applied in metallogenic analysis. The authors identify several areas: multispectral imagery (ASTER, Landsat, etc.), the development of global models of the deep structure of the Earth crust and upper mantle (based on GOCE); visualization of metallogenic data. The authors believe that space technologies are extremely important for metallogenic analysis. The use of space technologies is also important for forcasting new deposits of strategic metals in remote, poorly studied areas of the Russian Arctic.


Finance info: The article was prepared in the framework of the IGEM RAS State Task: “Metallogeny of ore districts of volcanoplutonic and folded orogenic belts in the North-East of Russia”.

References:

1. Jonas A., Sinkevicius A., Flannery S. et al. Space: Investment Implications of the Final Frontier. New York, Morgan Stanley Research, 2017, 59 p.

2. Korsakov A. K., Korchutanova N. I. Ot kursa “distantsionnye metody geologicheskogo kartirovaniya” k spetsializatsii “kosmicheskaya geologiya”. [From the course “remote methods of geological mapping” to the specialization “space Geology”]. Izv. vuzov. Geologiya i razvedka, 2012, no. 5, pp. 73—75. (In Russian).

3. Milovsky G. A., Makarov V. P., Troitsky V. V. et al. Primenenie rezul’tatov distantsionnogo zondirovaniya dlya vyyavleniya zakonomernostey lokalizatsii zolotogo orudeneniya v tsentral’noy chasti Ayan-Yuryakhskogo antiklinoriya Magadanskoy oblasti. [Application of Remote-Sensing Observations for Detecting Patterns of Localization of Gold Mineralization in Central Part of Ayan-Yuryakhsky Anticlinorium of the Magadan Region]. Issledovanie Zemli iz kosmosa, 2018, no. 5, pp. 23—30. DOI: 10.31857/S020596140003234-8. (In Russian).

4. Kruse F. A., Taranik J. V., Coolbaugh M. et al. Effect of Reduced Spatial Resolution on Mineral Mapping Using Imaging Spectrometry–Examples Using Hyperspectral Infrared Imager (HyspIRI)-Simulated Data. Remote Sens., 2011, no. 3, pp. 1584—1602. DOI: 10.3390/rs3081584.

5. Ranjbar H., Honarmand M., Moezifar Z. Application of the Crosta technique for porphyry copper alteration mapping, using ETM+ data in the southern part of the Iranian volcanic sedimentary belt. J. Asian Earth Sci., 2004, vol. 24, pp. 237—243.

6. Ducart D. F., Crósta A. P., Souza-Filho C. R. Alteration Mineralogy at the Cerro La Mina Epithermal Prospect, Patagonia, Argentina: Field Mapping, Short-Wave Infrared Spectroscopy, and ASTER Images. Econ. Geol., 2006, vol. 101, pp. 981—996.

7. Rowan L. C., Robert G. S., John C. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Rem. Sen. Environ., 2006, vol. 104, pp. 74—87.

8. Pour A., Hashim M. Spectral transformation of ASTER data and the discrimination of hydrothermal alteration minerals in a semi-arid region, SE Iran. Intern. J. of the Physical Sciences, 2011, vol. 6(8), pp. 2037—2059.

9. Zhang T., Yi G., Li H. et al. Integrating Data of ASTER and Landsat-8 OLI (AO) for Hydrothermal Alteration Mineral Mapping in Duolong Porphyry Cu-Au Deposit, Tibetan Plateau, China. Remote Sens., 2016, vol. 8, 890. DOI: 10.3390/rs8110890 www.mdpi.com/journal/remote-sensing.

10. Bigot L., Geo P., Legros L. New era in geological mapping. Available at: https://effigis.com/en/new-era-geological-mapping-multispectral-satellites-advanced-data-processing/.

11. Cook D. R., Hollings P., Walshe J. L. Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Econ. Geol., 2005, vol. 100, pp. 801—818.

12. Sillitoe R. H. Porphyry Copper Systems. Econ. Geol., 2010, vol. 105, pp. 3—41.

13. Êëþéêîâ À. À. Íîâàÿ ýðà â èçó÷åíèè ãðàâèòàöèîííîãî ïîëÿ Çåìëè // Íàó÷. òð. Èí-òà àñòðîíîìèè ÐÀÍ. — 2018. — Ò. 2. — Ñ. 20—25. — DOI: 10.26087/INASAN.2018.2.2.003.

Kluikov A. A. Novaya era v izuchenii gravitatsionnogo polya Zemli. [New era in studies of gravity field of Earth]. Nauch. tr. In-ta astronomii RAN, 2018, vol. 2, pp. 20—25. DOI: 10.26087/INASAN.2018.2.2.003. (In Russian).

14. Reguzzoni M., Sampietro D. GEMMA: An Earth crustal model based on GOCE satellite data. Intern. J. Appl. Earth Obs. Geoinform., 2015, vol. 35, pp. 31—43.

15. Bassin C., Laske G., Masters G. The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans AGU, 81, F897, 2000. Available at: http://igppweb.ucsd.edu/~gabi/crust2.html.

16. Laske G., Masters G., Reif C. CRUST 2.0: A new global crustal model at 2×2 degrees. Available at: http://igppweb.ucsd.edu/~gabi/rem.html.

17. Bouman J., Ebbing J., Meekes S., Abdul Fattah R. et al. GOCE gravity gradient data for lithospheric modeling. Intern. J. Appl. Earth Obs. Geoinform., 2015, vol. 35, pp.  16—30.

18. Cammarano F., Guerri M. Global thermal models of the lithosphere. Geophys. J. Intern, 2017, vol. 210, pp.  56—72.

19. Pasyanos M. E., Masters T. G., Laske G. et al. LITHO1.0: an updated crust and lithospheric model of Earth. J. Geophys. Res. Solid Earth, 2014, vol. 119, no. 3, pp. 2153—2173.

20. Volkov A. V., Galyamov A. L. Geofizicheskaya model’ zemnoy kory, geodinamicheskie obstanovki i perspektivy otkrytiya mestorozhdeniy zolota karlinskogo tipa v arkticheskoy zone Respubliki Sakha (Yakutiya). [Geophysical model of the Earth’s crust, geodynamic conditions and prospects for discovering Carlin-type ore deposits in the Arctic zone of the Republic of Sakha (Yakutia)]. Arktika: ekologiya i ekonomika, 2020, nî. 1 (37), ðð. 82—94. DOI: 10.25283/2223-4594-2020-1-82-94. (In Russian).

21. Sidorov A. A., Volkov A. V., Galyamov A. L. On the Metallogeny at the Pacific Volcanic Belts. J. of Volcanology and Seismology, 2019, vol. 13, no. 6, pp. 363—375.

22. Volkov A. V., Galyamov A. L., Lobanov K. V. Geodinamicheskie obstanovki formirovaniya mestorozhdeniy strategicheskikh metallov v Arkticheskoy zone Rossii. [Geodynamic formation setting of the strategic metal deposits in the Russian Arctic zone]. Arktika: ekologiya i ekonomika, 2019, no. 2 (34), ðð. 109—119. DOI: 10.25283/2223-4594-2019-2-109-119. (In Russian).


Download »


© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594