Home Rubrics of the Journal Author Index Index ompany directory Article Index
Arctic: ecology and economy
ISSN 2223-4594
Home Archive of journals Issue 3(35) 2019 Apatite mining and processing production and eutrophication of the Arctic Lake Imandra


JOURNAL: 2019, 3(35), p. 16-34

RUBRIC: Ecology

AUTHORS: Kashulin N.A., Dauvalter V.A., Petrov O.V., Bekkelund A.A.

ORGANIZATIONS: Institute of North Industrial Ecology Problems of the Kola Science Centre of the RAS, Creek-Bio AB

DOI: 10.25283/2223-4594-2019-3-16-34

UDC: 504.052+504.4.054

The article was received on: 23.04.2019

Keywords: nitrogen, surface waters, eutrophication, macronutrients, Phosphorous, critical load, cyanobacteria

Bibliographic description: Kashulin N.A., Dauvalter V.A., Petrov O.V., Bekkelund A.A. Apatite mining and processing production and eutrophication of the Arctic Lake Imandra. Arctic: ecology and economy, 2019, no. 3(35), pp. 16-34. DOI: 10.25283/2223-4594-2019-3-16-34. (In Russian).


As a result of the extraction and processing of the Khibiny apatitonefeline ores (Murmansk region), thousands of tons of mineral substances get into the aquatic environment, including the P and N compounds. Surface waters are the main migration medium of pollutants, most of which accumulate in the large eutrophied polar Lake Imandra. Annual receipts in the Bolshaya Imandra reach only along the Belaya River are estimated at 1,233 tons of N and 300 tons of P, which exceeds the critical load for the entire water body. The spatial and temporal dynamics of the main forms of P and N, features of the interrelationship of the Arctic lake pollution by macrobioge.


1. Antropogennye modifikatsii ekosistemy ozera Imandra. [Anthropogenic modification of the ecosystem of the Lake Imandra]. Moscow, Nauka, 2002, 403 p. (In Russian).
2. Dauvalter V. A., Kashulin N. A. Assessment of the Ecological State of the Arctic Freshwater System Based on Concentrations of Heavy Metals in the Bottom Sediments. Geochemistry Intern, 2018, 56 (8), pp. 842—856.
3. Dauvalter V. A., Kashulin N. A. Mercury Pollution of Lake Imandra Sediments, the Murmansk Region, Russia. Intern. J. of Environmental Research, 2018, 12 (6), pp. 939—953.
4. Kashulin N. A., Dauvalter V. A., Skoufina T. P., Kotelnikov V. A. Ustoichivoe vodopol’zovanie v Arktike. Novye podkhody i resheniya. [Sustainable water use in the Arctic. New approaches and solutions]. The Arctic: Ecology and Economy, 2018, no. 4 (32), pp. 15—29. DOI:10.25283/2223-4594-2018-4-15-29. (In Russian).
5. Kashulin N. A. et al. Selected aspects of the current state of freshwater resources in the Murmansk region, Russia. J. of Environmental Science and Health. Pt. A: Toxic/Hazardous Substances and Environmental Engineering, 2017, 52 (9), pp. 921—929.
6. Terent’eva I. A. et al. Otsenka troficheskogo statusa subarkticheskogo ozera Imandra. [Estimate of the trophic status of subarctic Imandra Lake]. Vestn. of MSTU, 2017, 20 (1-2), pp. 197—204. DOI: 10.21443/1560-9278-2017-20-1/2-197-204. (In Russian).
7. Denisov D. B., Kashulin N. A. Tsianoprokarioty v sostave planktona ozera Imandra (Kol’skii poluostrov). [Cyanoprocaryota of the Imandra Lake (Kola Peninsula). Tr. KSC. Applied Ecology of the North, 2016, no. 7-4 (41), pp. 40—57. (In Russian).
8. Terentjev P. M. et al. Rol’ evropeiskoi koryushki Osmerus eperlanus (Linnaeus) v strukture ikhtiofauny basseina oz. Imandra (Murmanskaya oblast’). [The role of european smelt Osmerus eperlanus in fish fauna structure of the Imandra lake basin (Murmansk province). Tr. Zool. in-ta RAN, 2017, vol. 321, no. 2, pp. 228—243. (In Russian).
9. Michalak A. M. et al. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proceedings of the National Academy of Sciences, 2013, 110 (16), pp. 6448—6452.
10. Carmichael W. W. Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Human and ecological risk assessment: An Intern. J., 2001, vol. 7, no. 5, pp. 1393—1407.
11. Huisman J., Hulot F. D. Population dynamics of harmful cyanobacteria. Harmful cyanobacteria. Dordrecht, Springer, 2005, pp. 143—176.
12. Paerl H. W. et al. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment, 2011, 409 (10), pp. 1739—1745.
13. Paerl H. W. et al. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae, 2016, 54, pp. 213—222.
14. Scheffer M., Carpenter S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in ecology & evolution, 2003, vol. 18, no. 12, pp. 648—656.
15. Carpenter S. R. et al. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annual rev. of Environment and Resources, 2011, 36, pp. 75—99. Available at: http://dx.doi.org/10.1146/annurev-environ-021810-094524.
16. Conroy J. D. et al. Temporal trends in Lake Erie plankton biomass: roles of external phosphorus loading and dreissenid mussels. J. of Great Lakes Research, 2005, 31, pp. 89—110.
17. Broberg O., Persson G. Particulate and dissolved phosphorus forms in freshwater: composition and analysis. Hydrobiologia, 1988, vol. 170, no. 1, pp. 61—90.
18. Kashulin N. A., Denisov D. B., Sandimirov S. S., Dauval’ter V. A., Kashulina T. G., Malinovskii D. N., Vandysh O. I., Il’yashuk B. P., Kudryavtseva L. P. Antropogennyye izmeneniya vodnykh sistem Khibinskogo gornogo massiva (Murmanskaya oblast). [Anthropogenic changes in the water systems of the Khibiny mountain range (Murmansk region)]. Apatity, Izd. KNTs RAN. Vol. 1. 2008. 250 p.; Vol. 2. 2009. 282 p. (In Russian).
19. Vollenweider R. A. Input-Output Models, with Special Reference to the Phosphorus Loading Concept in Limnology. Schweizerische Ztschr. für Hydrologie. Swiss J. of Hydrology, 1975, 37, pp. 53—84.
20. Kirchner W. B.; Dillon P. J. An Empirical Method of Estimating the Retention of Phosphorus in Lakes. Water Resources Res., 1985, 11, pp. 182—183.
21. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria, 2013.
22. Balakrishnan N. Methods and applications of statistics in the life and health sciences. [S. l.], John Wiley & Sons, 2010, 987 .
23. Subbotin V. A. et al. Explosive. Patent RU 2544708. 2013. (In Russian).
24. Morin K. A., Hutt N. M. Mine-water leaching of nitrogen species from explosive residues. Proceedings of GeoHalifax, 2009. p. 20—24.
25. Brochu S. Assessment of ANFO on the environment. Defence research and development Canada VALCARTIER (Quebec), 2010. DRDC-VALCARTIER-TM-2009-195.
26. Schindler D. W. Evolution of phosphorus limitation in lakes. Science, 1977, 195 (4275), pp. 260—262.
27. Wetzel R. G. Limnology: lake and river ecosystems. [S. l.], Gulf professional publ., 2001.
28. Abell J. M. et al. Latitudinal variation in nutrient stoichiometry and chlorophyll-nutrient relationships in lakes: a global study. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 2012, 181 (1), pp. 1—14.
29. O’Neil J. M., Davis T. W., Burford M. A., Gobler C. J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae, 2012, 14, pp. 313—334.
30. Willen E. Phytoplankton in water quality assessment — An indicator concept. Hydrological and Limnological Aspects of Lake Monitoring. [S. l.], Wiley and Sons, Ltd, 2000, pp. 57—80.
31. Chorus I., Schauser I. Oligotrophication of Lake Tegel and Schlachtensee, Berlin. Analysis of system components, causalities and response thresholds compared to responses of other waterbodies. Dessau, 2011, pp. 22—58.
32. Smith V. H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science, 1983, 221 (4611), pp. 669—671.
33. Harris T. D. et al. Combined effects of nitrogen to phosphorus and nitrate to ammonia ratios on cyanobacterial metabolite concentrations in eutrophic Midwestern USA reservoirs. Inland Waters, 2016, 6 (2), pp.199—210. Available at: https://doi.org/10.5268/IW-6.2.938.
34. Smith V. H. The nitrogen and phosphorus dependence of algal biomass in lakes: An empirical and theoretical analysis. Limnol. Oceanogr., 1982, 27 (6), pp. 1101—1112.
35. Aldridge F. et al. The use of nutrient enrichment bioassays to test for spatial and temporal distribution of limiting factors affecting phytoplankton dynamics in Lake Okeechobee, Florida. Ergebnisse der Limnologie, 1995, 45, pp. 177—190.
36. Dolman A. M. et al. Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus. PLOS ONE, 2012, 7 (6), p. e38757.
37. Finlay K. et al. Experimental evidence that pollution with urea can degrade water quality in phosphorus‐rich lakes of the Northern Great Plains. Limnology and Oceanography, 2010, 55 (3), pp. 1213—1230.
38. Monchamp M.-E., Pick F. R., Beisner B. E., Maranger R. (2014) Nitrogen Forms Influence Microcystin Concentration and Composition via Changes in Cyanobacterial Community Structure. PLOS ONE, 9 (1), p. e85573. Available at: https://doi.org/10.1371/journal.pone.0085573.
39. Beversdorf L. J., Miller T. R., McMahon K. D. Long-term monitoring reveals carbon–nitrogen metabolism key to microcystin production in eutrophic lakes. Front. Microbiol. 2015, 6. p. 456. DOI: 10.3389/fmicb.2015.00456.
40. Patova E. N. Bloom-Forming Cyanoprokaryotes in Kharbeyskie Lakes of Bolshezemelskaya Tundra. J. of Siberian Federal University. Biology, 2014, 7 (3), pp. 282—290.
41. Paerl H. W., Huisman J. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental microbiology reports, 2009, 1 (1). pp. 27—37.
42. Patova E. N. Raznoobrazie, ekologiya i geografiya Cyanophyta (Cyanoprokaryota) evropeiskogo sektora Rossiiskoi Arktiki. [Diversity, Ecology and Geography Cyanophyta (Cyanoprokaryota) of the European Sector of the Russian Arctic]. Vestn. In-ta biologii KNTs UO RAN, 2013, no. 4, pp. 29—30. (In Russian).

Download »

© 2011-2019 Arctic: ecology and economy
DOI 10.25283/2223-4594