Home Rubrics of the Journal Author Index Index ompany directory Article Index
The Arctic: ecology and economy
ISSN 2223-4594
Home Archive of journals Issue 4(32) 2018 Sustainable water use in the Arctic. New approaches and solutions


JOURNAL: 2018, 4(32), p. 15-29

RUBRIC: Ecology

AUTHORS: N.A. Kashulin, V.A. Dauvalter, T.P. Skoufina, V.A. Kotelnikov

ORGANIZATIONS: Institute of North Industrial Ecology Problems of the Kola Science Centre of the RAS, Luzin Institute for Economic Studies Subdivision of the Kola Science Centre of the RS, Polar Alpine Botanical Garden and Institute of the Kola Science Centre of the RAS

DOI: 10.25283/2223-4594-2018-4-15-29

UDC: 504.062.2+504.062.4

The article was received on: 29.06.2018

Keywords: circular economy, biotechnology, microalgae, sustainable water use

Bibliographic description: N.A. Kashulin, V.A. Dauvalter, T.P. Skoufina, V.A. Kotelnikov Sustainable water use in the Arctic. New approaches and solutions. The Arctic: ecology and economy, 2018, no. 4(32), pp. 15-29. DOI:10.25283/2223-4594-2018-4-15-29. (In Russian).


The article considers the reasons for the decrease in the resource potential of surface waters in the European part of the Arctic region. The existing linear nature-destructive economic models in the conditions of the Arctic do not ensure the sustainable development of the region, leading to the degradation of natural systems. The solution could be a search for new approaches and principles of environmental management based on innovative models and nature-like principles of circular economy, accumulated knowledge in the fields of ecology and biomimetics. The possibility of implementing the global trend of wastewater reuse in the Arctic zone of the Russian Federation (AZRF) is considered.

In the context of circular economy with cyclical product use, when economic development is balanced with the protection of natural resources and environmental sustainability, wastewater is a widely available and valuable resource. Due to the reuse, wastewater becomes an additional resource that ensures the water use sustainability. The basis of these approaches are nature-like biomimetic technologies, repeating the principles of functioning of biological systems at various levels, capable of processing low-concentrated raw materials, with low energy and resource costs, providing economic benefits and successfully competing with traditional approaches in the economy. To implement priority innovation and investment projects in the field of low-temperature biotechnology, it is obvious that a regional research and production infrastructure for the biotechnology development will be created in the Russian Arctic.



1. Pavlenko V. I. Arkticheskaya zona Rossiiskoi Federatsii v sisteme obespecheniya natsional’nykh interesov strany. [Arctic zone of the Russian Federation in the system of national interests of the country]. Arktika: ekologiya i ekonomika, 2013, n. 4 (12), . 16—25. (In Russian).

2. Tatarkin A. I., Zakharchuk E. A., Loginov V. G. Sovremennaya paradigma osvoeniya i razvitiya Arkticheskoi zony Rossiiskoi Federatsii. [The modern paradigm of development of the Arctic zone of the Russian Federation]. Arktika: ekologiya i ekonomika, 2015, n. 2 (18), . 4—13. (In Russian).

3. Ness D. Sustainable urban infrastructure in China: Towards a Factor 10 improvement in resource productivity through integrated infrastructure systems. Intern. J. Sustain. Dev. World Ecol., 2008, 15, pp. 288-—301. DOI: 10.3843/SusDev.15.4:2.

4. Ghisellini P., Cialani C., Ulgiati S. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J. of Cleaner Production, 2016, vl. 114, . 11—32. DOI: 10.1016/j.jclepro.2015.09.007.

5. Okhrana okruzhayushchei sredy v Rossii. [Environmental protection in Russia. 2016]. Stat. sb. Rosstat. Moscow, 2016, pp. 0—92. (In Russian).

6. Preston F. A global redesign? Shaping the circular economy. The Royal Inst. of Intern. Affairs. London, Chatham House, 2012.

7. Lacy P., Rosenberg D., Drewell Q., Rutqvist J. 5 Business Models that are Driving the Circular Economy, 2013. Available t: https://www.fastcompany.com/1681904/5-business-models-that-are-driving-the-circular-economy.

8. Planing P. Business model innovation in a circular economy reasons for non-acceptance of circular business models. Open J. of Business Model Innovation, 2015, vl. 1, . 11.

9. Erkman S. Industrial ecology: an historical view. J. of Cleaner Production, 1997, vol. 5, n. 1—2, pp. 1—10.

10. Preston F., Lehne J. A Wider Circle? The Circular Economy in Developing Countries. London, Chatham House, 2017, 24 .

11. Qadir M., Smakhtin V. Where the Water Is. Project Syndicate. 2018. Available t: https://www.project-syndicate.org/commentary/tapping-unconventional-freshwater-sources-by-manzoor-qadir-and-vladimir-smakhtin-2018-05.

12. Preobrazovanie nashego mira: Povestka dnya v oblasti ustoichivogo razvitiya na period do 2030 goda. OON, 2015. [Transforming our world: the 2030 Agenda for Sustainable Development. 70/1. UN. Resolution adopted by the General Assembly on 25 September 2015]. Available at: http://docs.cntd.ru/document/420355765 (In Russian).

13. Global Risks 2015, 10th Edition. World Economic Forum. Geneva, 2015. Available t: http://www3.weforum.org/docs/WEF_Global_Risks_2015_Report15.pdf.

14. Schwarzenbach R. P., Egli T., Hofstetter T. B., Urs von Gunten U., Wehrli B. 2010. Global water pollution and human health. Annual Rev. of Environment and Resources, 35, . 109—136.

15. Cosgrove W. J., Loucks D. P. Water management: Current and future challenges and research directions. Water Resources Research, 2015, vl. 51, n. 6, . 4823—4839.

16. Hoekstra A. Y. Water scarcity challenges to business. Nature climate change. 2014, vl. 4, n. 5, . 318—320. DOI: 10.1038/nclimate2214.

17. Water. Global Issue. Socio-Economic and Demographic Drivers. WEF, 2018. Available t: https://toplink.weforum.org/knowledge/insight/a1Gb00000015MLgEAM/explore/dimension/a1Gb0000001TbSMEA0/summary.

18. Kashulin N. A., Dauvalter V., Denisov D., Valkova S. Selected aspects of the current state of freshwater resources in the Murmansk region, Russi. J. of Environmental Science and Health, 2017, pt. A, 52 (9), pp. 921—929. DOI: 10.1080/10934529.2017.1318633.

19. Kashulina T. G., Kashulin N. A., Dauval’ter V. A. Dolgovremennaya dinamika gidrokhimicheskikh pokazatelei nizkomineralizovannogo subarkticheskogo ozera pri snizhenii kislotnoi nagruzki. [The long-term dynamics of hydrochemical indices of low-mineralized subarctic lakes in reducing the acid load]. Vestn. Murm. gos. tekhn. un-ta, 2016, vl. 19, n. 1—2, . 194—206. (In Russian).

20. Dauval’ter V. A., Kashulin N. A. Gidrokhimiya ozer Bol’shezemel’skoi tundry. [Hydrochemistry of Lakes in Bol’shezemelskaya Tundra]. Meteorologiya i gidrologiya, 2017, n. 8. . 93—104. (In Russian).

21. Lomakina N. V. Reformennye transformatsii i ikh rezul’taty v mineral’nom sektore Dal’nego Vostoka. [Reform Transformations and Their Results in the Mineral Sector of the Far East]. Prostranstv. ekonomika, 2018, n. 1, . 59—82. DOI: 10.14530/se.2018.1.059-082. (In Russian).

22. Wastewater: the untapped resource. UN world water development report 2017.

23. Tong T., Elimelech M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environmental science & technology, 2016, vl. 50, n. 13, . 6846—6855.

24. Li W. W., Yu H. Q., He Zh. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy & Environmental Science, 2014, vl. 7, n. 3, . 911—924. Available t: http://dx.doi.org/10.1039/C3EE43106A.

25. Hernández-Sancho F., Molinos ., Sala-Garrido R. Economic valuation of environmental benefits from wastewater treatment processes: An empirical approach for Spain. Science of the Total Environment, 2010, vl. 408, n. 4, . 953—957. DOI: 10.1016/j.scitotenv.2009.10.028.

26. Molinos-Senante M., Hernández-Sancho F., Mocholí-Arce M., Sala-Garrido R. Economic and environmental performance of wastewater treatment plants: Potential reductions in greenhouse gases emissions. Resource and Energy Economics, 2014, vol. 38, pp. 125—140. Available t: https://doi.org/10.1016/j.reseneeco.2014.07.001.

27. Ruiz-Rosa I., García-Rodríguez F. J., Mendoza-Jiménez J. Development and application of a cost management model for wastewater treatment and reuse processes. J. of Cleaner Production, 2016, vol. 113, . 299—310. Available t: https://doi.org/10.1016/j.jclepro.2015.12.044.

28. Papa M., Alfonsín C., Moreira M. T., Bertanza G. Ranking wastewater treatment trains based on their impacts and benefits on human health: a “Biological Assay and Disease” approach. J. of Cleaner Production, 2016, vol. 113, . 311—317. Available t: https://doi.org/10.1016/j.jclepro.2015.11.021.

29. Grant S. B., Saphores J.-D., Feldman D. L., Hamilton A. J., Fletcher T. D., Cook P. L. M., Stewardson M., Sanders B. F., Levin L. A., Ambrose R. F., Deletic A., Brown R., Jiang S. C., Rosso D., Cooper W. J., Marusic I. Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science, 2012, vol. 337, iss. 6095, pp. 681—686. DOI: 10.1126/science.1216852.

30. Wood A., Blackhurst M., Hawkins T., Xue X., Ashbolt N., Garland J. Cost-effectiveness of nitrogen mitigation by alternative household wastewater management technologies. J. of environmental management, 2015, vol.150, . 344—354. DOI: 10.1016/j.jenvman.2014.10.002.

31. Guidelines for the Integration of Sustainable Agriculture and Rural Development. The concept of SARD. FAO, Food and Agriculture Organization. 2002. Available t: http://www.fao.org/docrep/w7541e/w7541e04.htm.

32. Reh L. Process engineering in circular economy. Particuology, 2013, 11, pp. 119—133. Available t: https://doi.org/10.1016/j.partic.2012.11.001.

33. Harnessing the Fourth Industrial Revolution. WEF, 2018. Available t: https://toplink.weforum.org/knowledge/insight/a1Gb0000001hXikEAE/explore/dimension/a1Gb00000044D65EAE/summary.

34. Carlson R. Time for New DNA Synthesis and Sequencing Cost Curves. Synthetic Biology News. 2014. Available t: https://synbiobeta.com/time-new-dna-synthesis-sequencing-cost-curves-rob-carlson/.

35. Tueth M. Fundamentals of sustainable business: a guide for the next 100 years. World Scientific Books. 2009, 228 .

36. Kompleksnaya programma razvitiya biotekhnologii v Rossiiskoi Federatsii na period do 2020 goda. Utv. Pravitel’stvom RF 24 aprelya 2012 g. 1853P-P8 [Integrated program for the development of biotechnologies in the Russian Federation for the period until 2020. The Government of Russia of April 24, 2012. 1853-8]. (In Russian).

37. Woo H. M. Solar-to-chemical and solar-to-fuel production from CO2 by metabolically engineered microorganisms. Current opinion in biotechnology, 2017, vol. 45, . 1—7. Available t: https://doi.org/10.1016/j.copbio.2016.11.017.

38. Hansen A. S. L., Lennen R. M., Sonnenschein N., Herrgård M. J. Systems biology solutions for biochemical production challenges. Current opinion in biotechnology, 2017, vol. 45, . 85—91. DOI: 10.1016/j.copbio.2016.11.018.

39. Poggi-Varaldo H. M., Devault D. A., Macarie H., Sastre-Conde I. Environmental biotechnology and engineering: crucial tools for improving and caring for the environment and the quality of life of modern societies. Environmental Science and Pollution Research, 2017, vol. 24, pp. 25483—25487. DOI:10.1007/s11356-017-0621-y.

40. Pauli G. A. The Blue Economy Version 2.0: 200 Projects Implemented, US$ 4 Billion Invested, 3 Million Jobs Created: a Report to the Club of Rome — Academic Foundation. 2015. 419 .

41. Chew K. W., Yap J. Y., Show P. L., Suan N. H., Juan J.C., Ling T.C., Lee D. J., Chang J. S. Microalgae biorefinery: High value products perspectives. Bioresource technology, 2017, 229, pp. 53—62. DOI: 10.1016/j.biortech.2017.01.006.

42. Moreno-Garcia L., Adjallé K., Barnabé S.,  Raghavan G. S. V. Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability. Renewable and Sustainable Energy Rev., 2017, 76, 493—506. Available t: http://dx.doi.org/10.1016/j.rser.2017.03.024.

43. Razzak S. A., Ali S. A. M., Hossain M. M., deLasa H. 2017. Biological CO2 fixation with production of microalgae in wastewater – A review. Renewable and Sustainable Energy Rev., vol. 76, pp. 379—390. Available t: http://dx.doi.org/10.1016/j.rser.2017.02.038.

44. Salama E.-S., Abou-shanab R., Yang Il-S.,  Jeon B.-H., Kurade M., El-Dalatony M. M., Min B. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renewable and Sustainable Energy Rev., 2017, 79, pp. 1189—1211. DOI: 10.1016/j.rser.2017.05.091.

45. Milano J., Hwai Chyuan Ong,  Masjuki H. H.,  Chong W. T., Man Kee Lam, Ping Kwan Loh, Vellayan V. Microalgae biofuels as an alternative to fossil fuel for power generation. Renewable and Sustainable Energy Rev., 2016, 58, pp. 180—197. Available t: http://dx.doi.org/10.1016/j.rser.2015.12.150.

46. Wang Y., Ho S. H., Cheng C., L., Guo W. Q., Nagarajan D., Ren N. Q., Lee D. J., Chang J. S. Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresource technology, 2016, 222, pp. 485—497. DOI: 10.1016/j.biortech.2016.09.106.

47. Suganya T., Ho S. H., Cheng C., L., Guo W. Q., Nagarajan D., Ren N. Q., Lee D. J., Chang J. S. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renewable and Sustainable Energy Rev., 2016. 55, pp. 909—941. Available t: http://dx.doi.org/10.1016/j.rser.2015.11.026.

48. Zhou W., Wang J., Chen P., Ji C., Kang Q., Lu B., Li K., Liu J., Ruan R. Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renewable and Sustainable Energy Rev., 2017, 76, pp. 1163—1175. Available t: https://doi.org/10.1016/j.rser.2017.03.065.

Download »

© 2011-2019 The Arctic: ecology and economy
DOI 10.25283/2223-4594