| ||||
| ||||
Home » Archive of journals » Volume 13, No. 4, 2023 » Distribution of subsea permafrost (frozen ground) in the Laptev Sea based on seismic refraction data DISTRIBUTION OF SUBSEA PERMAFROST (FROZEN GROUND) IN THE LAPTEV SEA BASED ON SEISMIC REFRACTION DATAJOURNAL: Volume 13, No. 4, 2023, p. 501-515HEADING: Research activities in the Arctic AUTHORS: Bogoyavlensky, V.I., Kishankov, A.V., Kazanin, A.G. ORGANIZATIONS: Oil and Gas Research Institute of RAS, JSC Marine Arctic Geological Expedition DOI: 10.25283/2223-4594-2023-4-501-515 UDC: 553.981.2 The article was received on: 28.08.2023 Keywords: gas hydrates, Laptev sea, seismic prospecting, gas seeps, permafrost, taliks, refraction waves, upper part of the section (UPS) Bibliographic description: Bogoyavlensky, V.I., Kishankov, A.V., Kazanin, A.G. Distribution of subsea permafrost (frozen ground) in the Laptev Sea based on seismic refraction data. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2023, vol. 13, no. 4, pp. 501-515. DOI: 10.25283/2223-4594-2023-4-501-515. (In Russian). Abstract: For the first time, for an area of 454 thousand km2 of the Laptev Sea, processing and comprehensive analysis of a large volume of records of the first arrivals of refracted waves of common shot gathers was carried out along 113 CDP seismic lines of JSC MAGE with a total length of about 20.7 thousand km. Fundamentally new information was obtained on the state of the subsea cryolithozone, and the boundary between the predominant distribution of frozen (Southern zone) and thawed (Northern zone) ground was identified. It was substantiated that a number of identified through taliks in the Southern zone have an endogenous genesis and are associated with large disjunctive displacements. High seismic activity in the central part of the Laptev Sea improves faults permeability, which contributes to the activation of subvertical migration of deep fluid flows and enhances the role of the endogenous factor in the degradation of permafrost (frozen ground) and gas hydrates. A large thawed zone was discovered in the North Western area of JSC MAGE activities, approaching close to the coast of Taimyr. A comparison of the results obtained with the data of the stratigraphic well DL-1, drilled in 2022 by FSBI VSEGEI and JSC Rosgeologia near the eastern border of the Laptev Sea, showed their complete correspondence, clearly indicating completed degradation of subsea permafrost in a significant part of the seas of Eastern Siberia. Finance info: The research was carried out according to the state assignment of the Oil and Gas Research Institute, Russian Academy of Sciences on the topic “Improving the efficiency and environmental safety of the oil and gas resources development in the Arctic and Subarctic zones of the Earth in a changing climate” (No. 122022800264-9). References: 1. Saunois M., Stavert A. R., Poulter B. et al. The Global Methane Budget 2000—2017. Earth Syst. Sci. Data, 2020, vol. 12, pp. 1561—1623. DOI: 10.5194/essd-12-1561-2020. 2. Sayedi S. S., Abbott B. W., Thornton B. F., Frederick J. M. et al. Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment. Environ. Res. Lett., 2020, vol. 15, 124075. Available at: https://doi.org/10.1088/1748-9326/abcc29. 3. Lan X., Thoning K. W., Dlugokencky E. J. Trends in globally-averaged CH4, N2O, and SF6 determined from NOAA Global Monitoring Laboratory measurements. Version 2023-09. Available at: https://doi.org/10.15138/P8XG-AA10. 4. Anisimov O. A., Kokorev V. A. Comparative Analysis of the Land, Marine and Satellite Observations of Methane in the Lover Atmosphere in the Russian Arctic under the Conditions of the Changing Climate. Issledovanie Zemli iz kosmosa, 2015, no. 2, pp. 1—14. (In Russian). 5. Сергиенко В. И., Лобковский Л. И., Шахова Н. Е. и др. Деградация подводной мерзлоты и разрушение гидратов шельфа морей Восточной Арктики как возможная причина «метановой катастрофы»: некоторые результаты комплексных исследований 2011 года // Докл. Акад. наук. — 2012. — Т. 446, № 3. — С. 330—335. Sergienko V. I., Lobkovskiy L. I., Shakhova N. E. et al. Degradation of underwater permafrost and degradation of hydrates of the Eastern Arctic Shelf seas as a possible cause of a “methane catastrophy”: some results of complex research in 2011. Dokl. Akad. nauk, 2012, vol. 446, no. 3, pp. 330—335. (In Russian). 6. Shakhova N., Semiletov I., Sergienko V., Lobkovsky L., Yusupov V., Salyuk A., Salomatin A., Chernykh D., Kosmach D., Panteleev G., Nicolsky D., Samarkin V., Joye S., Charkin A., Dudarev O., Meluzov A., and Gustafsson O. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice, Philos. T. R. Soc. S.-A, 2015, vol. 373, p. 2052. Available at: https://doi.org/10.1098/rsta.2014.0451. 7. Matveeva T. V., Kaminsky V. D., Semenova A. A., Shchur N. A. Factors Affecting the Formation and Evolution of Permafrost and Stability Zone of Gas Hydrates: Case Study of the Laptev Sea. Geosciences, 2020, vol. 10, 504, 21 p. DOI: 10.3390/geosciences10120504. 8. Baranov B., Galkin S., Vedenin A. et al. Methane seeps on the outer shelf of the Laptev Sea: characteristic features, structural control, and benthic fauna. Geo-Marine Letters, 2020, vol. 40, pp. 541—557. 9. Brown J., Ferrians O. J. J., Heginbottom J. A., Melnikov E. S. Circum-Arctic map of permafrost and ground-ice conditions. Washington, D. C., U.S. Geological Survey in Cooperation with the Circum-Pacific Council for Energy and Mineral Resources, 2001. Available at: https://doi.org/10.3133/cp45. 10. Nicolsky D. J., Romanovsky V. E., Romanovskii N. N., Kholodov A. L., Shakhova N. E., Semiletov I. P. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: The Laptev Sea region. J. of Geophysical Research, 2012, vol. 117, F03028. Available at: https://doi.org/10.1029/2012JF002358. 11. Romanovskii N. N., Hubberten H. W. Permafrost and gas hydrate stability zone on the Laptev Sea shelf (main results of ten-year Russian-German investigation). Cryosphere of the Earth, 2006, vol. 10 (3), pp. 61—68. 12. Romanovskii N. N., Hubberten H.-W., Gavrilov A. V., Tumskoy V. E., Kholodov A. L. Permafrost of the east Siberian Arctic shelf and coastal lowlands. Quat. Sci. Rev., 2004, 23, pp. 1359—1369. Available at: https://doi.org/10.1016/j.quascirev.2003.12.014. 13. Romanovskii N. N., Tumskoi V. E. Retrospective approach to the estimation of the contemporary extension and structure of the shelf cryolithozone in East Arctic. The Cryosphere of the Earth, 2011, vol. 15 (1), pp. 3—14. 14. Overduin P., Schneider von Deimling T., Miesner F. et al. Submarine permafrost map in the Arctic modelled using 1d transient heat flux (SuPerMAP). J. Geophys Res Oceans, 2019, vol. 124 (6), pp. 3490—3507. Available at: https://doi.org/10.1029/2018JC014675. 15. Angelopoulos M., Overduin P. P., Miesner F., Grigoriev M. N., Vasiliev A. A. Recent advances in the study of Arctic submarine permafrost. Permafrost and Periglacial Process, John Wiley & Sons Ltd., 2020, vol. 31, pp. 442—453. Available at: https://doi.org/10.1002/ppp.2061. 16. Koshurnikov A. V. Frozen ground of the Russian Arctic Shelf (on basis of geophysical studies). Abstract of the dissertation for the degree of doctor of geological and mineralogical sciences. Moscow, MSU, 2023, 45 p. (In Russian). 17. Marine Science Atlas of the Beaufort Sea. Geology and Geophysics. Pelletier B. R. (Ed.). Geological Survey of Canada, Miscellaneous. Report 40, 1987, 43 p. 18. Brothers L. L., Hart P. E., Ruppel C. D. Minimum distribution of subsea ice‐bearing permafrost on the US Beaufort Sea continental shelf. Geophysical research letters, 2012, vol. 39, no. 15, pp. 1—6. 19. Bogoyavlensky V. I., Yanchevskaya A. S., Bogoyavlensky I. V., Kishankov A. V. Gas hydrates on the Circum-Arctic Region aquatories. Arctic: Ecology and Economy, 2018, no. 3 (31), pp. 42—55. DOI: 10.25283/2223-4594-2018-3-42-55. (In Russian). 20. Bogoyavlensky V., Kishankov A., Yanchevskaya A., Bogoyavlensky I. Forecast of Gas Hydrates Distribution Zones in the Arctic Ocean and Adjacent Offshore Areas. Geosciences, 2018, 8, 453, 17 p. DOI: 10.3390/geosciences8120453. 21. Bogoyavlensky V. I., Kazanin A. G., Kishankov A. V., Kazanin G. A. Earth degassing in the Arctic: comprehensive analysis of factors of powerful gas emission in the Laptev Sea. Arctic: Ecology and Economy, 2021, vol. 11, no. 2, pp. 178—194. DOI: 10.25283/2223-4594-2021-2-178-194. (In Russian). 22. Bogoyavlensky V. I., Kishankov A. V., Kazanin A. G., Kazanin G. A. Dangerous gas-saturated objects in the World Ocean: the East Siberian Sea. Arctic: Ecology and Economy, 2022, vol. 12, no. 2, pp. 157—171. DOI: 10.25283/2223-4594-2022-2-158-171. (In Russian). 23. Bogoyavlensky V. I., Kishankov A. V., Kazanin A. G. Permafrost, Gas Hydrates, and Gas Seeps in the Central Part of the Laptev Sea. Doklady Earth Sciences, 2021, vol. 500, pt. 1, pp. 766—771. DOI: 10.1134/S1028334X2109004X. 24. Bogoyavlensky V. I., Kishankov A. V., Kazanin A. G. Subaqual cryolithozone and gas seeps on the Laptev Sea shelf. Modern studies of cryosphere transformation and questions of geotechnical safety of constructions in the Arctic. Salekhard, 2021, pp. 59—62. DOI: 10.7868/9785604610848013. (In Russian). 25. Bogoyavlensky V., Kishankov A., Kazanin A., Kazanin G. Distribution of permafrost and gas hydrates in relation to intensive gas emission in the central part of the Laptev Sea (Russian Arctic). Marine and Petroleum Geology, 2022, 105527, pp. 1—15. Available at: https://doi.org/10.1016/j.marpetgeo.2022.105527. 26. Bogoyavlensky V., Kishankov A., Kazanin A. Permafrost and Gas Hydrates on the East Siberian Arctic Shelf. Doklady Earth Sciences, Pleiades Publishing, 2022, vol. 507, pt. 1, pp. 946—951. DOI: 10.1134/S1028334X22600578. 27. Bogoyavlensky V., Kishankov A., Kazanin A. Evidence of wide-scale absence of frozen ground and gas hydrates in the northern part of the East Siberian Arctic Shelf (Laptev and East Siberian seas). Marine and Petroleum Geology, 2023, vol. 148, 106050, 15 p. Available at: https://doi.org/10.1016/j.marpetgeo.2022.106050. 28. Senin B. V., Kerimov V. Y., Bogoyavlensky V. I., Leonchik M. I., Mustaev R. N. Oil and gas bearing provinces of the seas of Russia and adjacent offshore areas. Book 3. Oil and gas bearing provinces of the seas of the Eastern Arctic and Far East. Moscow, MGRI, 2022, 339 p. (In Russian). 29. Rosneft confirmed the discovery of a new field in the Khatanga gulf with reserves of more than 80 million tons of oil. Available at: https://www.rosneft.ru/press/news/item/188105/ (In Russian). 30. Drachev S. S., Malyshev N. A., Nikishin A. M. Tectonic history and petroleum geology of the Russian Arctic Shelves: an overview. Geological society, London, petroleum geology conference series, 2010, vol. 7 (1), pp. 591—619. 31. Kirillova-Pokrovskaya T. A. Actualized model of the Laptev Sea structure and main HC traps of structural class. Innovative Vector of Development of JSC “MAGE”. Compilation of papers, St. Petersburg, 2017, pp. 228—251. (In Russian). 32. Avetisov G. P. Once again about earthquakes of the Laptev Sea. Geological and geophysical characteristics of the Arctic region lithosphere. Iss. 3. St. Petersburg, VNIIOkeangeologia, 2002, pp. 104—114. (In Russian). 33. Krylov A. A., Ivashchenko A. I., Kovachev S. A. et al. The Seismotectonics and Seismicity of the Laptev Sea Region: The Current Situation and a First Experience in a Year-Long Installation of Ocean Bottom Seismometers on the Shelf. J. of Volcanology and Seismology, 2020, vol. 14, no. 6, pp. 379—393. DOI: 10.31857/S0203030620060140. 34. Naidina O. D. Changes of paleo environment of the eastern shelf of the Laptev Sea in late ice age. Stratigraphy. Geological correlation, 2009, vol. 17, no. 5, pp. 95—1008. 35. Kraineva M. V., Malakhova V. V., Golubeva E. N. Numerical modeling of formation of temperature anomalies in the Laptev Sea, caused by flow of the Lena River. Optics of atmosphere, 2015, vol. 28, no. 6, pp. 534—539. DOI: 10.15372/A0020150606. (In Russian). 36. Bolshiyanov D. Yu., Makarov A. S., Shnaider V., Shtof G. Origin and development of the Lena River delta. St. Petersburg, AARI, 2013, 268 p. (In Russian). 37. Maksimov G. T., Grigoriev M. N., Bolshiyanov D. Yu. Formation and distribution of permafrost and taliks under channels of the Lena River Delta. Arctic and Subarctic Natural Resources, 2022, vol. 27 (3), pp. 370—380. Available at: https://doi.org/10.31242/2618-9712-2022-27-3-370-380. (In Russian). 38. Anisimova N. P., Pavlova N. A., Stambovskaya Ya. V. Chemical composition of ground waters of the taliks of the Lena River middle flow valley. Science and education, 2005, no. 4 (40), pp. 92—96. (In Russian). 39. Franke D., Hinz K., Oncken O. The Laptev Sea Rift. Mar. Petrol. Geol., 2001, vol. 18 (10), pp. 1083—1127. Available at: https://doi.org/10.1016/S0264-8172(01)00041-1. 40. Cramer B., Franke D. Indications for an active petroleum system in the Laptev Sea, NE Siberia. J. Petroleum Geology, 2005, vol. 28 (4), pp. 369—384. 41. Overduin P. P., Wetterich S., Günther F., Grigoriev M. N., Grosse G., Schirrmeister L., Hubberten H.-W., Makarov A. Coastal dynamics and submarine permafrost in shallow water of the central Laptev Sea, East Siberia. The Cryosphere, 2016, vol. 10, pp. 1449—1462. DOI: 10.5194/tc-10-1449-2016. 42. Koshurnikov A. V., Tumskoy V. E., Skosar V. V., Efimov Ya. O., Kornishin K. A., Bekker A. T., Piskunov Yu. G., Tsimbelman N. Ya., Kosmach D. A. Submarine permafrost in the Laptev Sea. Intern. J. of Offshore and Polar Engineering, 2020, vol. 30, no. 1, pp. 86—93. Available at: https://doi.org/10.17736/ijope.2020.jc783. 43. Petrov O. V., Nikishin A. M., Petrov E. I., Tatarinov V. Y., Kashubin S. N. et al. First results of stratigraphic drilling in the East Siberian Sea focused on the geological studies of the suture zone of the continental shelf’s marginal structures and deep-water areas of the Arctic Ocean. Doklady Earth Sciences, 2023, vol. 512 (2), pp. 100—110. DOI: 10.31857/S268673972360100X. (In Russian). 44. Yakovlev D. V., Yakovleva A. G., Valyasina O. A. Studies of the cryolithozone of the northern margin of the Siberian Platform based on data of regional electric survey. Earth Cryosphere, 2018, vol. 22, no. 5, pp. 77—95. DOI: 10.21782/KZ1560-7496-2018-5(77-95). (In Russian). 45. Steinbach J., Holmstrand H., Shcherbakova K., Kosmach D., Brüchert V., Shakhova N. et al. Source apportionment of methane escaping the subsea permafrost system in the outer Eurasian Arctic Shelf. Proc. Natl. Acad. Sci. Unit. States Am., 2021, vol. 118 (10). 46. Grigoryev M. N. Research of degradation of frozen ground of the East Siberian seas. Arctic and Antarctic Research, 2017, no. 1 (111), pp. 89—96. Available at: https://doi.org/10.30758/0555-2648-2017-0-1-89-96. (In Russian). 47. Bukhanov B., Chuvilin E., Zhmaev M., Shakhova N. et al. In situ bottom sediment temperatures in the Siberian Arctic seas: Current state of subsea permafrost in the Kara sea vs Laptev and East Siberian seas. Marine and Petroleum Geology, 2023, vol. 157, 106467, 11 p. Available at: https://doi.org/10.1016/j.marpetgeo.2023.106467. 48. Miesner F., Overduin P. P., Grosse G. et al. Subsea permafrost organic carbon stocks are large and of dominantly low reactivity. Scientific Reports, 2023, vol. 13, no. 9425, 12 p. Available at: https://doi.org/10.1038/s41598-023-36471-z. Download » | ||||
© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594
|